资讯

承天示优,优品至上。

傅立叶变换红外光谱图分析(傅立叶变化红外光谱)

承天示优官方账号 2023-03-21 资讯 876 views 0

又到了我们给大家分享有关傅立叶变换红外光谱图分析的时候了,同时我们也会对与之对应的傅立叶变化红外光谱进行一样的解释哦,希望小伙伴们可以仔细的阅读,如果能对你们正好有所帮助,记得支持一下本站哦。

本文目录一览:

傅立叶红外光谱仪FTIR的具体原理?

傅立叶变换红外光谱仪的核心部件是干涉仪,干涉仪的主要功能是使光源发出的红外光分为两束,一束被定镜反射,一束被动镜反射,动镜的移动使得反射回来的两束光产生了一定的光程差,再使之复合以产生干涉,所得到的干涉图函数包含了光源的全部频率和强度信息。用计算机将干涉图函数进行傅里叶变换,就可以得到以波长或波数为函数的频域图,即红外光谱图。

傅里叶红外光谱图怎么看

傅里叶红外光谱介绍如下:

傅立叶变换红外光谱仪无色散元件,没有夹缝,故来自光源的光有足够的能量经过干涉后照射到样品上然后到达检测器,傅立叶变换红外光谱仪测量部分的主要核心部件是干涉仪,干涉仪是由固定不动的反射镜M1(定镜),可移动的反射镜M2(动镜)及分光束器B组成。

M1和M2是互相垂直的平面反射镜。B以45°角置于M1和M2之间,B能将来自光源的光束分成相等的两部分,一半光束经B后被反射,另一半光束则透射通过B。在迈克尔逊干涉仪中,当来自光源的入射光经光分束器分成两束光,经过两反射镜反射后又汇聚在一起。

再投射到检测器上,由于动镜的移动,使两束光产生了光程差,当光程差为半波长的偶数倍时,发生相长干涉,产生明线;为半波长的奇数倍时,发生相消干涉,产生暗线,若光程差既不是半波长的偶数倍,也不是奇数倍时,则相干光强度介于前两种情况之间。

当动镜联系移动,在检测器上记录的信号余弦变化,每移动四分之一波长的距离,信号则从明到暗周期性的改变一次。上内突(句夭图片乃 )为邰作老亚台"忡传县"田户卜传并发布木平台仅提做信息存储服务。

ftir主要是分析什么

ftir主要是分析光谱。

FTIR主要由迈克尔逊干涉仪和计算机两部分组成。由红外光源S发出的红外光经准直为平行红外光束进入干涉系统,经干涉仪调整制后得到一束干涉光。

干涉光通过样品Sa,获得含有光谱信息的干涉信号到达探测器D上,由D将干涉信号变为电信号。此处的干涉信号是一时间函数,即由干涉信号绘出的干涉图,其横坐标是动镜移动时间或动镜移动距离。

这种干涉图经过A/D转换器送入计算机,由计算机进行傅立叶变换的快速计算,即可获得以波数为横坐标的红外光谱图。然后通过D/A转换器送入绘图仪而绘出人们十分熟悉的标准红外吸收光谱图。

扩展资料

红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。

当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动。

含n个原子的分子应有3n-6个简正振动方式;如果是线性分子,只有3n-5个简正振动方式。以非线性三原子分子为例,它的简正振动方式只有三种。

在v1和v3振动中,只是化学键的伸长和缩短,称为伸缩振动,而v2的振动方式改变了分子中化学键间的夹角称为变角振动,它们是分子振动的主要方式。

分子振动的能量与红外射线的光量子能量正好对应,因此,当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子的振动,而产生红外吸收光谱。

傅里叶变换红外光谱仪:

它是非色散型的,核心部分是一台双光束干涉仪(图4中虚线框内所示),常用的是迈克耳孙干涉仪。当动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。经过傅里叶变换的数学运算后,就可得到入射光的光谱B(v):

式中I(x)为干涉信号;v为波数;x为两束光的光程差。

傅里叶变换光谱仪的主要优点是:

①多通道测量使信噪比提高;

②没有入射和出射狭缝限制,因而光通量高,提高了仪器的灵敏度;

③以氦、氖激光波长为标准,波数值的精确度可达0.01厘米;

④增加动镜移动距离就可使分辨本领提高;

⑤工作波段可从可见区延伸到毫米区,使远红外光谱的测定得以实现。

参考资料:百度百科-FTIR(傅立叶变换红外吸收光谱仪)

参考资料:百度百科-红外光谱

红外光谱

一、红外光谱的基本原理

分子运动包括分子整体的转动、组成原子的振动和分子中电子的运动。分子的每一运动状态都具有一定的能量。在分子中,各原子靠相互的键力作用维持在平衡位置,并在平衡位置附近作微小的振动,构成分子的振动模式。分子的振动在一般的情况下是复杂的,因此在一定条件下可把分子的振动看作是几种相互独立的较简单的振动方式的叠加。这些相互独立的较简单的振动方式转为简正振动模式。每种简正振动模式有其特征频率(v),各种简正振动频率由分子的几何构型、原子间的键力场及原子的质量等因素决定的。

分子在作频率为v的简正振动时,它的振动能量为:En=(1/2+n)hv式中,n是振动能级的振动量子数,取整数0,1,2,…,h是普朗克常量。

振动基态E0称为零点振动能,即便是在绝对零度时也存在零点振动能。当入射光子的能量hv恰好等于振动的能级差时,分子有可能吸收光子能量而发生振动状态的跃迁。

可见,hv光=E1-E0=hv0。当入射光的频率等于分子的一个简正振动频率(v光=v0)时,则分子有可能吸收光的能量,从基态跃迁到第一激发态。按经典理论的说法,就是由于入射光的频率等于振动的固有频率,使分子对光能发生共振吸收(图13-5-1)。

图13-5-1 红外光谱振动基态

产生红外吸收的条件,除了上述的跃迁规律外,同时还必须具有偶极矩的变化,这种振动方式称为红外活性的,反之,在振动过程中偶极矩不发生变化的振动方式是非红外活性的,虽然有振动,但不能吸收红外辐射。一个多原子分子可具有3N-6种(N为组成分子的原子数)简谐振动(对于线性分子只有3N-5种),各种简谐振动具有一定的能量,在特有的波数位置上应产生吸收,即每种简谐振动相应有一个振动频率。在各种简谐振动中,有的振动属于非红外活性,有的因具有相同的振动频率(但方向相反)而产生振动简并。所以,红外振动频率数目总是少于振动形式数目3N-6(或3N-5),分子对称型越高,简并越多,振动频率越少于振动数目。

测量和记录红外吸收光谱的仪器称为红外分光光度计。根据分光原理的不同,红外分光光度计可分为两大类型:色散型和干涉型。色散型红外分光光度计依据光的折射和衍射,采用色散元件(棱镜或光栅)进行分光;干涉型红外分光光度计则是基于光相干性原理利用干涉仪达到分光的目的。再根据数学上的傅立叶变换函数的特性对干涉仪进行改进,并利用计算机将其光源的干涉图转换成光源的光谱图,故又称为傅立叶红外分光光度计(fTIR)。

由于傅立叶变换红外分光光度计屏弃了狭缝装置,使得它在任何测量时间内都能够获得辐射源的所有频率的全部信息,同时也消除了狭缝对光谱能量的限制,使得光能的利用率大大提高,即所谓能量输出大,因而它在实际使用上有很多优点。提高了灵敏度、分辨率和精度(0.01cm-1),减少了杂散光。

二、红外光谱的解析

红外区的划分

珠宝玉石学GAC教程

(1)近红外光区:其吸收带主要是由低能电子跃迁、含氢原子团伸缩振动的倍频吸收等产生的。该区的光谱可用于研究稀土和其他过渡金属离子的化合物,及水、含氢原子团化合物的分析(如胶、蜡和宝玉石中的有机染料)。

(2)中红外光区:该区的吸收带主要为基频吸收带,由于基频振动是红外光谱中吸收最强的振动,故此区最宜用于对宝玉石进行红外光谱的定性和定量分析。①在4000~1250cm-1称为特征频率区,此区的吸收峰较疏,主要包括:含有氢原子的单键、各种三键和双键的伸缩振动的基频峰;②1250~400cm-1频区是宝石矿物鉴定的指纹区。所出现的谱带相当于各种单键的伸缩振动,以及多数基团的弯曲振动。③相关频率:特征频率可以证明官能团的存在,但多数情况下,一个官能团有数种振动形式,而每一种红外活性振动都有一个相应的吸收峰,有时还能观察到倍频峰,因而不能由单一特征峰肯定官能团的存在。特征频率是与相关频率相互依存的吸收峰,其数目是由分子结构和光谱图的波长范围决定的。在中红外光谱区,多数基团都有一组相关峰。

(3)远红外光区:该区的吸收带主要与气体分子中的纯转动跃迁、振动-转动跃迁,一般不在此区范围内进行宝玉石分析。

三、试样的制备

现代的傅立叶红外光谱仪附有显微透射和反射红外光谱装置,可以不破坏样品直接检测。对不透明的宝石采用反射红外光谱装置检测,对透明的宝石采用透射红外光谱装置检测。对于宝石矿物原料则采用粉末法制备样品。粉末法制备样品制备的方法主要有2种:压片法和糊状法。

(1)压片法:一般将宝玉石样品取下1~3mg,放在玛瑙研钵中制成粉末,加100~300mg KBr混合研磨均匀,再加入到压模内,压制成一定直径或厚度的透明片。然后进行测定。

(2)糊状法:如果是研究宝玉石中的氢的存在形式,则将试样研成粉末后和石蜡油混合研磨制成糊膏,以减少在样品中的散射。

一般来说,在制备试样时应注意以下几点:①试样最好是单一组分的物质;②试样的浓度或测试厚度应选择适当,以使光谱中大多数吸收峰的透光度处于15%~70%范围内;③试样中不应含有游离水。

四、红外光谱在宝石学中的应用

红外光谱是振动光谱,它是物质内部的显微结构和键合的灵敏探测器。根据所观测到的吸收峰的位置、对称性和相对强度,可提供非常有用的结构和成分信息。利用特征吸收谱带的频率,推断分子中存在某一基团成键。进而再由特征吸收谱带频率的位移,推断邻接基团的特征,由分子的特征吸收谱带强度的改变,可对其混合物和化合物进行定量分析。

红外光谱图的表示:纵坐标表示透过率(或吸收率),横坐标表示波长(nm)或频率(cm-1)。红外光谱在宝玉石学中有着广泛的应用。

(1)宝玉石物相的鉴定:与钻石相似的无色宝石,如无色的立方氧化锆、钇铝榴石和锡石等和钻石十分相似,但它们的红外光谱图有明显的区别。

(2)钻石类型的判定:如图13-5-2是用FTIR判定钻石类型的一个好方法。

图13-5-2 用红外光谱(FTIR)判定钻石类型

图13-5-3 金刚石的红外光谱图

(3)浸染宝玉石的检测:如翡翠的A、B和C货的检测,镀膜处翡翠的鉴定。

(4)近红外区是宝玉石中碳、氢和氧等元素存在形式研究的特征区。矿物中若有水分子存在,则它的组合频和倍频均在近红外区(如绿柱石和电气石等)。红外光谱图中(图13-5-3)显示IIb型金刚石结构中存在H2分子,其振动谱峰位于4106cm-1。

傅里叶红外光谱仪Spectrum65的操作步骤

简单操作规程

1、打开仪器电源开关,听到“迪迪”声后,启动计算机。

2、双击桌面上Spectra Manager图标打开主界面,进入光谱窗口。

3、点击Spectra Manager 窗口里的Spectrum Measurement 图标,进入光谱测量窗口,以进行样品的光谱测量。

4、设置测量参数,点击Measure 􀃆Parameters。

5、进行背景的测量,点击Background Measurement,测量背景、保存。

6、放入已制好的样品,点击Measurement进行样品的光谱扫描,得到样品光谱图保存、分析。

7、点击Spectra Analysisi进行光谱分析。

8、测量完毕后,退出Spectra Manager光谱窗口,退出计算机系统。

9、关闭红外光谱仪和计算机电源,并做好使用情况的登记。

注意事项

1、为了得到稳定的数据,最好在开机15分钟之后进行测量。

2、湿气会影响红外的使用寿命,要特别注意保持实验室湿度指标(小于60%)。

3、红外主机的Resume开关要一直保持在开机状态,以利于仪器内部的除湿。

4、样品仓内的红色窗片材质为KRS-5(有毒性),如果不小心触到请洗手。

5、请勿擅自搬动主机,否则会损坏光路系统。如有搬动需要,须把主机内的固定螺丝上紧。

6、测量背景时,切勿放入样品。

朋友可以到行业内专业的网站进行交流学习!

分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

红外光谱仪操作规程及注意事项

1. 保持室内干燥,空调和除湿机必须全天开机(保持环境条件25±10℃左右,湿度≤70%);

2. 保持实验室安静和整洁,不得在实验室内进行样品化学处理,实验完毕即取出样品室内的样品。

3. 经常检查干燥剂颜色,如果兰色变浅,立即更换。

4. 根据样品特性以及状态,制定相应的制样方法并制样。

5. 测试红外光谱图时,扫描空光路背景信号和样品文件信号,经傅立叶变换得到样品红外光谱图。根据需要,打印或者保存红外光谱图。

6. 实验完毕后在记录本上记录使用情况。

7. 设备停止使用时,样品室内应放置盛满干燥剂的培养皿。

8. 干燥剂再生:将干燥剂在烘箱内105℃烘干至兰色(约3小时)即可。

9. 将压片模具、KBr晶体、液体池及其窗片放在干燥器内备用。

10. 液体池使用NaCl、CaF2、BaF2等晶体很脆易碎,应小心保存。

11. 液体池使用的KRS-5晶体剧毒,使用时避免直接接触(戴手套),打磨KRS-5晶体时避免接触或吸入KRS-5粉末,打磨的废弃物必须妥善处理。

朋友可以到行业内专业的网站进行交流学习!

分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

傅立叶变换红外光谱图分析的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于傅立叶变化红外光谱、傅立叶变换红外光谱图分析的信息别忘了在本站进行查找喔。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624