资讯

承天示优,优品至上。

傅里叶红外光谱亚砜基(傅里叶红外光谱仪制样)

承天示优官方账号 2023-03-18 资讯 1031 views 0

又到了我们给大家分享有关傅里叶红外光谱亚砜基的时候了,同时我们也会对与之对应的傅里叶红外光谱仪制样进行一样的解释哦,希望小伙伴们可以仔细的阅读,如果能对你们正好有所帮助,记得支持一下本站哦。

本文目录一览:

急求傅里叶红外光谱468, 569, 1116 and 1454 cm-1分别代表什么基团?

红外谱图一般以几组数来确定一个特征基团,不以一个数据来代表一个基团。所以,你这个问题无解。你可以截图出来,这样很快就有相应的分析了。

有机化学

有机化学 又称为碳化合物的化学,是研究有机化合物的结构、性质、制备的学科,是化学中极重要的一个分支。含碳化合物被称为有机化合物是因为以往的化学家们认为含碳物质一定要由生物(有机体)才能制造;然而在1828年的时候,德国化学家弗里德里希·维勒,在实验室中成功合成尿素(一种生物分子),自此以后有机化学便脱离传统所定义的范围,扩大为含碳物质的化学。

“有机化学”这一名词于1806年首次由贝采里乌斯提出。当时是作为“无机化学”的对立物而命名的。由于科学条件限制,有机化学研究的对象只能是从天然动植物有机体中提取的有机物。因而许多化学家都认为,在生物体内由于存在所谓“生命力”,才能产生有机化合物,而在实验室里是不能由无机化合物合成的。

1824年,德国化学家维勒从氰经水解制得草酸;1828年他无意中用加热的方法又使氰酸铵转化为尿素。氰和氰酸铵都是无机化合物,而草酸和尿素都是有机化合物。维勒的实验结果给予“生命力”学说第一次冲击。此后,乙酸等有机化合物相继由碳、氢等元素合成,“生命力”学说才逐渐被人们抛弃。

由于合成方法的改进和发展,越来越多的有机化合物不断地在实验室中合成出来,其中,绝大部分是在与生物体内迥然不同的条件下合成出来的。“生命力”学说渐渐被抛弃了,“有机化学”这一名词却沿用至今。

从19世纪初到1858年提出价键概念之前是有机化学的萌芽时期。在这个时期,已经分离出许多有机化合物,制备了一些衍生物,并对它们作了定性描述,认识了一些有机化合物的性质。

法国化学家拉瓦锡发现,有机化合物燃烧后,产生二氧化碳和水。他的研究工作为有机化合物元素定量分析奠定了基础。1830年,德国化学家李比希发展了碳、氢分析法,1833年法国化学家杜马建立了氮的分析法。这些有机定量分析法的建立使化学家能够求得一个化合物的实验式。

当时在解决有机化合物分子中各原子是如何排列和结合的问题上,遇到了很大的困难。最初,有机化学用二元说来解决有机化合物的结构问题。二元说认为一个化合物的分子可分为带正电荷的部分和带负电荷的部分,二者靠静电力结合在一起。早期的化学家根据某些化学反应认为,有机化合物分子由在反应中保持不变的基团和在反应中起变化的基团按异性电荷的静电力结合。但这个学说本身有很大的矛盾。

类型说由法国化学家热拉尔和洛朗建立。此说否认有机化合物是由带正电荷和带负电荷的基团组成,而认为有机化合物是由一些可以发生取代的母体化合物衍生的,因而可以按这些母体化合物来分类。类型说把众多有机化合物按不同类型分类,根据它们的类型不仅可以解释化合物的一些性质,而且能够预言一些新化合物。但类型说未能回答有机化合物的结构问题。这个问题成为困扰人们多年的谜团。

从1858年价键学说的建立,到1916年价键的电子理论的引入,才解开了这个不解的谜团

经典有机化学时期。

1858年,德国化学家凯库勒和英国化学家库珀等提出价键的概念,并第一次用短划“—”表示“键”。他们认为有机化合物分子是由其组成的原子通过键结合而成的。由于在所有已知的化合物中,一个氢原子只能与一个别的元素的原子结合,氢就选作价的单位。一种元素的价数就是能够与这种元素的一个原子结合的氢原子的个数。凯库勒还提出,在一个分子中碳原子之间可以互相结合这一重要的概念。

1848年巴斯德分离到两种酒石酸结晶,一种半面晶向左,一种半面晶向右。前者能使平面偏振光向左旋转,后者则使之向右旋转,角度相同。在对乳酸的研究中也遇到类似现象。为此,1874年法国化学家勒贝尔和荷兰化学家范托夫分别提出一个新的概念:同分异构体,圆满地解释了这种异构现象。

他们认为:分子是个三维实体,碳的四个价键在空间是对称的,分别指向一个正四面体的四个顶点,碳原子则位于正四面体的中心。当碳原子与四个不同的原子或基团连接时,就产生一对异构体,它们互为实物和镜像,或左手和右手的手性关系,这一对化合物互为旋光异构体。勒贝尔和范托夫的学说,是有机化学中立体化学的基础。

1900年第一个自由基,三苯甲基自由基被发现,这是个长寿命的自由基。而不稳定自由基的存在也于1929年得到了证实。

在这个时期,有机化合物在结构测定以及反应和分类方面都取得很大进展。但价键只是化学家从实践经验得出的一种概念,价键的本质尚未解决。

编辑本段现代有机化学时期

在物理学家发现电子,并阐明原子结构的基础上,美国物理化学家路易斯等人于1916年提出价键的电子理论。

他们认为:各原子外层电子的相互作用是使各原子结合在一起的原因。相互作用的外层电子如从—个原子转移到另一个原子,则形成离子键;两个原子如果共用外层电子,则形成共价键。通过电子的转移或共用,使相互作用的原子的外层电子都获得惰性气体的电子构型。这样,价键的图象表示法中用来表示价键的短划“—”,实际上是两个原子的一对共用电子对。

1927年以后,海特勒和伦敦等用量子力学,处理分子结构问题,建立了价键理论,为化学键提出了一个数学模型。后来马利肯用分子轨道理论来处理分子结构,其结果与价键的电子理论所得的大体一致,由于计算简便,解决了许多当时不能回答的问题。

编辑本段有机化学的研究内容

有机化合物和无机化合物之间没有绝对的分界。有机化学之所以成为化学中的一个独立学科,是因为有机化合物确有其内在的联系和特性。

位于周期表当中的碳元素,一般是通过与别的元素的原子共用外层电子而达到稳定的电子构型的(即形成共价键)。这种共价键的结合方式决定了有机化合物的特性。大多数有机化合物由碳、氢、氮、氧几种元素构成,少数还含有卤素和硫、磷、氮等元素。因而大多数有机化合物具有熔点较低、可以燃烧、易溶于有机溶剂等性质,这与无机化合物的性质有很大不同。

在含多个碳原子的有机化合物分子中,碳原子互相结合形成分子的骨架,别的元素的原子就连接在该骨架上。在元素周期表中,没有一种别的元素能像碳那样以多种方式彼此牢固地结合。由碳原子形成的分子骨架有多种形式,有直链、支链、环状等。

在有机化学发展的初期,有机化学工业的主要原料是动、植物体,有机化学主要研究从动、植物体中分离有机化合物。

19世纪中到20世纪初,有机化学工业逐渐变为以煤焦油为主要原料。合成染料的发现,使染料、制药工业蓬勃发展,推动了对芳香族化合物和杂环化合物的研究。30年代以后,以乙炔为原料的有机合成兴起。40年代前后,有机化学工业的原料又逐渐转变为以石油和天然气为主,发展了合成橡胶、合成塑料和合成纤维工业。由于石油资源将日趋枯竭,以煤为原料的有机化学工业必将重新发展。当然,天然的动、植物和微生物体仍是重要的研究对象。

编辑本段天然有机化学主要研究

天然有机化学主要研究天然有机化合物的组成、合成、结构和性能。20世纪初至30年代,先后确定了单糖、氨基酸、核苷酸、牛胆酸、胆固醇和某些萜类的结构,肽和蛋白质的组成;30~40年代,确定了一些维生素、甾族激素、多聚糖的结构,完成了一些甾族激素和维生素的结构和合成的研究;40~50年代前后,发现青霉素等一些抗生素,完成了结构测定和合成;50年代完成了某些甾族化合物和吗啡等生物碱的全合成,催产素等生物活性小肽的合成,确定了胰岛素的化学结构,发现了蛋白质的螺旋结构,DNA的双螺旋结构;60年代完成了胰岛素的全合成和低聚核苷酸的合成;70年代至80年代初,进行了前列腺素、维生素B12、昆虫信息素激素的全合成,确定了核酸和美登木素的结构并完成了它们的全合成等等。

有机合成方面主要研究从较简单的化合物或元素经化学反应合成有机化合物。19世纪30年代合成了尿素;40年代合成了乙酸。随后陆续合成了葡萄糖酸、柠檬酸、琥珀酸、苹果酸等一系列有机酸;19世纪后半叶合成了多种染料;20世纪40年代合成了DDT和有机磷杀虫剂、有机硫杀菌剂、除草剂等农药;20世纪初,合成了606药剂,30~40年代,合成了一千多种磺胺类化合物,其中有些可用作药物。

编辑本段物理有机化学

物理有机化学是定量地研究有机化合物结构、反应性和反应机理的学科。它是在价键的电子学说的基础上,引用了现代物理学、物理化学的新进展和量子力学理论而发展起来的。20世纪20~30年代,通过反应机理的研究,建立了有机化学的新体系;50年代的构象分析和哈米特方程开始半定量估算反应性与结构的关系;60年代出现了分子轨道对称守恒原理和前线轨道理论。

有机分析即有机化合物的定性和定量分析。19世纪30年代建立了碳、氢定量分析法;90年代建立了氮的定量分析法;有机化合物中各种元素的常量分析法在19世纪末基本上已经齐全;20世纪20年代建立了有机微量定量分析法;70年代出现了自动化分析仪器。

由于科学和技术的发展,有机化学与各个学科互相渗透,形成了许多分支边缘学科。比如生物有机化学、物理有机化学、量子有机化学、海洋有机化学等。

有机化学的研究方法

有机化学研究手段的发展经历了从手工操作到自动化、计算机化,从常量到超微量的过程。

20世纪40年代前,用传统的蒸馏、结晶、升华等方法来纯化产品,用化学降解和衍生物制备的方法测定结构。后来,各种色谱法、电泳技术的应用,特别是高压液相色谱的应用改变了分离技术的面貌。各种光谱、能谱技术的使用,使有机化学家能够研究分子内部的运动,使结构测定手段发生了革命性的变化。

电子计算机的引入,使有机化合物的分离、分析方法向自动化、超微量化方向又前进了一大步。带傅里叶变换技术的核磁共振谱和红外光谱又为反应动力学、反应机理的研究提供了新的手段。这些仪器和x射线结构分析、电子衍射光谱分析,已能测定微克级样品的化学结构。用电子计算机设计合成路线的研究也已取得某些进展。

未来有机化学的发展首先是研究能源和资源的开发利用问题。迄今我们使用的大部分能源和资源,如煤、天然气、石油、动植物和微生物,都是太阳能的化学贮存形式。今后一些学科的重要课题是更直接、更有效地利用太阳能。

对光合作用做更深入的研究和有效的利用,是植物生理学、生物化学和有机化学的共同课题。有机化学可以用光化学反应生成高能有机化合物,加以贮存;必要时则利用其逆反应,释放出能量。另一个开发资源的目标是在有机金属化合物的作用下固定二氧化碳,以产生无穷尽的有。机化合物。这几方面的研究均已取得一些初步结果。

其次是研究和开发新型有机催化剂,使它们能够模拟酶的高速高效和温和的反应方式。这方面的研究已经开始,今后会有更大的发展。

20世纪60年代末,开始了有机合成的计算机辅助设计研究。今后有机合成路线的设计、有机化合物结构的测定等必将更趋系统化、逻辑化。

编辑本段有机化学课程

有机化学主要是介绍化学物质的科学(高中化学学习当中也会涉及部分有机化学的课程)。目前有机化学物质的分类主要是按照其决定性作用,能代表化学物质的基团也就是官能团的不同来进行分类的 。可分为:烷烃,烯烃,炔烃,芳香烃(以上为烃类);卤代烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物,胺类,硝基化合物,腈类,含硫有机化合物(如硫醇,硫醚,硫酚,磺酸,砜与亚砜等),含磷有机化合物等元素有机化合物,杂环化合物等(以上为烃衍生物)。

具体主要是介绍这些化学物质的系统命名,化学反应,反应机理,制备方法。其中化学反应基本上为基团的取代,能否进行一个反应,取决于热力学和动力学两个方面的因素。而制备方法主要是通过无机物,石油提取物,以及容易制备或成本低的物质制得难以得到的物质。反应机理也为基团之间的进攻和离去倾向之间的竞争。

关于傅里叶红外

1.前者是不是你写错了,应该是FTIR difractive spectroscopy(傅里叶变换红外衍射光谱) 后者翻译就不说了吧

2.采用傅里叶变换是为了使图像分析简单化,一般的IR都采用了傅里叶变换

3.如果其他处理也能使图像分析简单化,将来可能会用于IR,目前貌似我也就见过这一种。

傅里叶红外光谱仪测的是什么

傅里叶红外光谱仪测的是有机物的特征官能团,分子结构和化学组成。

一、红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。

二、分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收。

三、分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库。

四、拓展资料:

光谱仪主要应用于染织工业、环境科学、生物学、材料科学、高分子化学、催化、煤结构研究、石油工业、生物医学、生物化学、药学、无机和配位化学基础研究、半导体材料、日用化工等研究领域。

苏丹原油石油酸组成

一、原油酸性组分与总酸值的相关性

表2-8和表2-9分别列出了苏丹地区原油样品在加拿大和中国长江大学两家实验室分离的酸性组分(AF)和酸甲酯组分(FAMES)含量。

表2-8 原油酸性组分(AF)和酸甲酯组分(FAMES)含量(加拿大分析结果)

表2-9 原油酸性组分(AF)含量(长江大学分析结果)

分析表明,苏丹原油中分离出来的酸甲酯组分含量(FAMES,mg/g)与原油总酸值(TAN,mgKOH/g)具有很好的线性正相关(图2-26):

FAMES=1.5119TAN+1.0778,相关系数r2=0.8815

而甲酯化前的酸性组分中由于含有大量的极性芳香族成分,导致原油中酸性组分含量与原油总酸值相关性很差(Muglad盆地二者相关系数r2仅为0.5547;Melut盆地二者则无任何相关性)(图2-27)。

图2-26 原油总酸值(TAN)与酸甲酯组分含量(FAMES)的相关性

图2-27 原油总酸值(TAN)与酸性组分含量(AF)的相关性

二、傅里叶红外光谱表征的石油酸官能团组成

为了了解石油酸的官能团组成特征,我们对苏丹原油及其酸性组分和酸甲酯组分分别进行傅里叶红外光谱分析。图2-28显示了苏丹原油全油、酸性组分及其甲酯组分的傅里叶红外光谱图。在谱图数据标准化和基线校正的基础上,计算了下列官能团和结构参数(表2-10)。

表2-10 苏丹全油、酸性组分、酸甲酯的官能团和结构参数

续表

续表

如图2-28所示,苏丹原油显示相似的傅里叶红外光谱特征,具体表现在:①具有极强的脂肪族吸收峰,分别对应于脂肪族基团的伸展(3100~2800cm-1)、弯曲(1460cm-1和1377cm-1)和旋转振动(720cm-1);②存在芳香烃吸收峰(~1600cm-1和900~700cm-1);③部分样品在1800~1600cm-1波段出现吸收峰,显示存在含氧化合物。

如图2-28所示,原油酸性组分与原油相比,对应于脂肪族基团的伸展(3100~2800cm-1)、弯曲(1460cm-1和1377cm-1)和旋转振动(720cm-1)吸收峰明显减弱,而含氧官能团(1800~1600cm-1波段吸收峰)和芳香基吸收峰(~1600cm-1和900~700cm-1波段)显著增强,显示酸性组分存在大量的含氧和芳香族化合物。

图2-28A 全油、酸性组分及酸甲酯傅里叶红外光谱(按酸值大小排序)

图2-28B Suf-1(1500~1509m)原油红外结构鉴定示意图

如图2-28所示,经过酯化,原油酸甲酯组分与原油、酸性组分相比,芳香族成分大为降低;对应于脂肪族基团的伸展(3100~2800cm-1)、弯曲(1460cm-1和1377cm-1)和旋转振动(720cm-1)吸收峰仍然明显;但各类含氧官能团(1800~1600cm-1波段吸收峰)显著增强,羰基、多环醌类和苯酚等含氧基团在苏丹高酸值原油酸甲酯组分中大量富集。

原油酸值对原油本身及其酸甲酯组分的傅里叶红外光谱特征的影响将在后面详细讨论。

三、石油酸的高分辨质谱鉴定

1.酸性化合物分子的杂原子类型

通过FTMS实验分析了18个苏丹原油样品,鉴定出7种杂原子组成类型,分别为N、NO、NO2、O、O2、O3和O4(表2-11;图2-29),其中N和O2在所有样品中普遍存在且相对丰度较高,大多数原油中N和O2之和占80%以上,但不同原油间化合物类型差异明显,以O2为例,其相对丰度分布在14.47%~93.22%之间,即使类型丰度接近的原油,石油酸的分子缩合度和碳数分布也存在很大差异。O2和N类化合物包含较宽的分子缩合度范围,以Z值表示O2和N类化合物缩合度分布的数据见表2-12和表2-13。

表2-11 苏丹原油石油酸组分杂原子类型相对丰度

从不同类型杂原子含量来看(图2-29),极轻微降解原油(包括Muglad盆地FN-21井、KelaN-1井和Suf-1井(AbuGabra组)原油以及Melut盆地Gumry-1井和Zarzor-1井(深层)原油)以N1类化合物最丰富,次为O2类化合物;轻度降解原油(包括Muglad盆地FNE-3井(AbuGabra组)和Melut盆地Zarzor-1井(浅层)原油)以O2类化合物最丰富,同时含有较为丰富的N1类化合物;严重降解原油(包括Muglad盆地FNE-1、FulaC-2和Suf-1井(Bentiu组)和Melut盆地Anbar-1井原油)以O2类化合物占绝对优势,同时含有较低含量的N1类化合物。

2.O2类化合物的分布特征

O2类化合物的分子式Z值分布在0~-34之间,相对丰度数据见表2-12,不同Z值化合物相对丰度分布如图2-30与图2-31所示。不同样品间表现出不同分布特征,未降解原油均表现为链烷酸(Z=0系列)相对丰度最高,降解原油中一环环烷酸丰度最高,二环环烷酸次之,再次为三环环烷酸和脂肪酸,其他多环环烷酸丰度随环数增加逐渐降低。只有Anbar-1降解原油例外,其二环环烷酸丰度最高,一环环烷酸丰度次之,再次为三环环烷酸和脂肪酸。图2-30与图2-31显示苏丹地区原油羧酸类化合物Z值分布主要集中在0~-20之间,除0~-10(对应0~5环环烷酸)外,其他Z值对应化合物仍然占有一定比例。

图2-29 苏丹地区原油不同类型杂原子化合物丰度分布

表2 -12 O2 类化合物缩合度分布(%)

表2 -13 N1 类化合物缩合度分布(%)

图2-30 Muglad盆地原油O2类化合物缩合度分布

图2-31 Melut盆地原油O2类化合物缩合度分布

不同盆地原油O2类化合物Z值分布也存在差异,Muglad盆地原油O2类化合物Z值分布范围较宽,最大可达-34,而Melut盆地O2类化合物Z值最大只有-26,这可能与原油的原始母质组成差异有关。

除了酸性化合物杂原子类型和缩合度分布数据,FTMS分析结果还能提供某一缩合度化合物的碳数分布信息,苏丹地区原油O2类化合物碳数分布如图2-32所示。结合原油常规生物标志化合物分析,不难发现生物降解程度对羧酸类化合物组成的影响。轻微降解时脂肪酸仍占绝对优势,一环、二环的环烷酸丰度增加,如Zarzor-1井浅层的两个原油,其酸值并不高(但明显高于深层未降解原油的酸值);降解程度较高原油,如FulaNE-1、FulaC-2和Suf-1井(Bentiu或Aradeiba组)原油,脂肪酸大部分被降解,环烷酸成为石油酸的主要成分,其重要特征为具有较高丰度的Z=-8和Z=-10两类化合物,Z=-10系列在C30-C35附近出现一个较强峰,一般认为其对应藿烷酸富集,Z=-8类化合物可能对应四环环烷酸(如甾烷酸)或单环芳羧酸。Anbar-1原油既存在较高丰度的脂肪酸,又有较高丰度的一环、二环环烷酸,以及相对较高丰度的多环环烷酸,表明该原油经历了两次油气充注过程,早期充注的原油,由于构造抬升而遭受生物降解,原油富集了环烷酸;后来,构造沉降,新生成的正常原油(富含脂肪酸),再次充注该油藏,造成两期充注原油的混合。其他原油均为未降解原油,以脂肪酸为主,尤以C16和C18脂肪酸占绝对优势。

3.N类化合物的分布特征

原油中的含氮化合物可以分为碱性氮化物和非碱性氮化物,其中碱性氮化物在负离子ESI条件下不发生电离,因此在负离子条件下得到的质谱图中,所有含1个氮原子的氮化物属于非碱性氮化物。N类化合物分子式Z值分布在-9~-43之间,绝大部分样品的最大Z值为-15,为此,这里只分析Z≤-15的化合物类型分布。Z=-15对应于咔唑类化合物,Z=-21、Z=-27化合物表现明显的相对丰度优势,其对应结构主要为苯并咔唑和二苯并咔唑类化合物,由于最大Z值和Z值分布与化合物理论构型表现出完全一致的特点和规律,可以认为Z=-15、Z=-21和Z=-27分别主要由烷基咔唑、烷基苯并咔唑和烷基二苯并咔唑组成。

N类化合物缩合度分布特征与生物降解程度也存在一定相关性(图2-33),未降解原油中咔唑类化合物(Z=-15)的相对丰度最高,或苯并咔唑类化合物(Z=-21)丰度最高,且二者丰度较为接近,如FulaNE-3、FulaN-21、Suf-1(AbuGabra组)、Gumry-1和Zarzor-1井原油,但Zarzor-1井2100m以上的原油较2100m以下的原油含有相对较高丰度的高缩合度氮化合物,说明该井2100m以上的油藏遭受过轻微生物降解。同样地,FulaNE-3和FulaN-21井原油也遭受了轻微生物降解。随着生物降解程度增加,高缩合度氮化物的相对丰度逐渐增大,如KelaN-1和Anbar-1井原油苯并咔唑类化合物(Z=-21)丰度最高,次为二苯并咔唑(Z=-27),再次为咔唑类化合物(Z=-15),即含较高丰度的高缩合度氮化合物。Suf-1井(Bentiu组)原油降解程度较高,其氮化合物组成中以苯并咔唑为主,二苯并咔唑丰度稍低于苯并咔唑,但咔唑类化合物丰度已经很低。降解程度相对更高的FulaNE-1和FulaC-2井原油氮化合物组成中,以二苯并咔唑为主,次为苯并咔唑,而咔唑类化合物仅占很少的比例。

图2-32 苏丹地区原油O2类化合物碳数分布横坐标为碳数,纵坐标为相对丰度(%)

图2-33 N1类化合物丰度分布特征

图2-34 苏丹原油N1类化合物碳数分布横坐标为碳数,纵坐标为相对丰度(%)

N类化合物碳数分布如图2-34所示,通过碳数分布可以更加清晰地描述不同生物降解程度原油中氮化物的组成特征。未降解原油中高碳数(>C25)氮化物相对丰度较高,氮化物碳数分布范围较宽;降解后的原油中高碳数氮化物相对含量降低,<C25的Z=-21和Z=-27类化合物显示非常高的相对丰度,其分子结构对应苯并咔唑和二苯并咔唑类化合物,而咔唑类化合物在遭受生物降解的原油中相对丰度降低。

FTMS提供的信息说明咔唑、苯并咔唑、二苯并咔唑类含氮化合物是原油中最主要的非碱性氮化物,未降解原油中氮化物的分子量分布范围与含氧化合物基本一致,但在降解原油中氮化物组成发生很大变化,首先是分子烷基侧链长度随降解程度加深而减小,大多数苯并咔唑、二苯并咔唑类化合物分子中碳原子数降低到C25以下,而咔唑类化合物丰度严重降低,其他缩合度化合物在较宽范围内分布比较均匀,推测其分子结构中包含多个环状结构单元。

4.酸性化合物分子量分布

高酸值原油一般为重质原油,而重质原油一般具有较高的酸值,密度大、黏度高是一般高酸值原油的主要特征,这些原油的平均分子量也比较大。

高分辨质谱分析结果提供每一个质谱峰的精确质量和相对丰度,由此可以得到每一类化合物或全部酸性化合物的分子量分布。平均分子量一般有两种表示方式,即数均分子量和重均分子量,分别由公式(2-1)和公式(2-2)计算。

高酸值油藏的形成与分布

式中:Mi为某个化合物的分子量,Ni是该化合物的分子个数,在实际计算过程中以化合物质谱图相对丰度值代替。使用商品环烷酸进行方法测试,发现数均分子量Mn与使用蒸气压渗透法(VPO)得到的分子量非常接近,因此本研究以Mn作为化合物的平均分子量。

苏丹地区原油中酸性化合物的平均分子量数据见表2-14。平均分子量分布范围:酸性化合物在471~620之间,N类化合物在331~560之间,O2类化合物在349~530之间。

表2-14 化合物平均相对分子质量

续表

图2-35 原油酸值与O2类化合物平均分子量分布

O2类化合物的平均分子量与酸值的相关性如图2-35所示,显然,原油中O2类化合物的分子量与原油酸值具有很好的对数正相关性,即随着原油酸值的增大,O2类化合物分子量呈对数关系增大。随生物降解程度增加(酸值增加),N类化合物的平均分子量表现出明显减小的趋势,高缩合度的二苯并咔唑类化合物(Z=-27)随酸值变化趋势图如图2-36所示。前面已经讨论过N类化合物不同缩合度类型的分布特征,随生物降解程度增大,咔唑类化合物(Z=-15)相对含量降低,而苯并咔唑(Z=-21)和二苯并咔唑(Z=-27)类化合物相对含量增加。分子量数据显示高缩合度的非碱性氮化物在生物降解过程中分子趋于减小,即生物降解程度增加,缩合度增大,分子量减小,说明生物降解过程使非碱性氮化物的烷基侧链降解,生成小分子化合物,而缩合度低的小分子化合物随降解作用部分损失。根据这一规律,通过FTMS得到的N类化合物碳数分布图可以快速确定原油的生物降解程度,未降解原油中咔唑类化合物的碳数分布范围宽,且相对丰度较高,如图2-34所示,降解原油中咔唑类化合物相对丰度降低,低碳数苯并咔唑和二苯并咔唑类化合物丰度很高,其碳数分布范围集中在C17-C27之间。

图2-36 不同酸值原油二苯并咔唑类含氮化合物的分子量分布

四、苏丹原油酸甲酯组分的分子组成特征

1.酸甲酯组分的总离子流图

用改性氧化铝吸附柱从原油样品中分离出石油酸,经过酯化和纯化之后,通过气相色谱和色谱质谱分析研究甲酯化酸性化合物的组成。图2-37是苏丹原油酸甲酯组分的总离子流图。显然,高酸值原油样品中酸甲酯组分的主要成分即所谓的“环烷酸”,是在常规气相色谱图上无法分辨的复杂混合物由于无法分离而形成的大鼓包。从图2-37酸甲酯总离子流图上能够辨认的主要成分包括:正构脂肪酸、苯二甲酸和藿烷酸,未检测到甾烷酸。

2.脂肪酸组成

所分析的苏丹原油样品中普遍存在脂肪酸,但与环烷酸的丰度相比,它们仅为微量成分。利用m/z74质量色谱图可以反映正构脂肪酸的组成(表2-15和图2-38),正构C16和C18脂肪酸在m/z74质量色谱图中显示较强的相对丰度,非常容易识别。正构脂肪酸分子碳数分布在C9-C34之间(图2-39),且其分布明显分为两部分:低碳数(nC18以前)脂肪酸具有明显的偶碳优势,代表了降解微生物(细菌)对残余油的直接贡献;高碳数脂肪酸偶碳优势不明显或无偶碳优势,则代表原油原始母质在成熟阶段生成的产物。而FulaNE-1原油由于严重的生物降解作用,其原生的高碳数脂肪酸已全部降解,只有代表细菌产物的低碳数脂肪酸。值得一提的是Anbar-1原油,既存在具偶碳优势的低碳数脂肪酸,也存在丰富的无偶碳优势的高碳数脂肪酸,这表明该原油油藏经历了两次充注过程,即早期降解过的原油与后期正常原油混合成藏。

图2-37 苏丹代表性原油酸甲酯组分总离子流图

表2-15 苏丹原油正构脂肪酸的浓度(μg/g)

正构脂肪酸浓度与原油总酸值的关系见图2-40,随酸值的增加,脂肪酸浓度增加,达到峰值后,又随酸值的增加而减少。

图2-38 苏丹原油酸甲酯m/z74质量色谱图

图2-39 苏丹原油中正构脂肪酸的浓度分布

图2-40 苏丹原油样品总酸值与正构脂肪酸浓度的关系

3.芳香羧酸

Watson等(1999)在喜氧微生物降解模拟实验初期的原油样品中分离出过烷基苯羧酸系列化合物,并认为芳香羧酸是生物降解产物。在本次研究的样品中都含有芳香羧酸,主要见有苯二甲酸,但它们的烷基同系物却并不常见。

4.萜烷酸

在所分析的苏丹原油样品中普遍存在萜烷酸,主要为藿烷酸。所分析样品的m/z191质量色谱图见图2-41。这些化合物具有在C17和C21位的立体异构体(αβ)以及C22位的R和S构型。C30-C32藿烷酸的浓度是用它们在m/z235、m/z249、m/z263质量色谱图上的峰面积与5β-胆甾烷酸标样在m/z217上的峰面积计算的,没有进行响应因子校正(表2-16)。与藿烷系列不同,C31藿烷酸一般为基峰,C30藿烷酸的相对含量不高。藿烷酸的浓度随着样品总酸值的增加而呈对数增加(图2-42);且对数关系良好,说明藿烷酸等环烷酸是影响原油酸值的主要因素。

前人将原油中藿烷酸浓度的变化归结为:①与其他化合物降解难易程度的差异;②运移过程中混入成熟度较低的成分;③生物降解油中新生成的藿烷酸之贡献。比较在所分析的样品中藿烷和藿烷酸立体化学构型的差异,结合低碳数正构脂肪酸的明显偶碳优势,我们认为生物降解过程中新生成的酸类贡献可能是造成上述浓度变化的重要因素之一。

图2-41 苏丹原油样品酸甲酯组分的m/z191质量色谱图化合物鉴定见表2-5

表2-16 苏丹原油中藿烷酸的浓度(μg/g)

图2-42 苏丹原油样品总酸值与藿烷酸浓度的关系

对于严重降解的高酸值原油,还检测出25-降藿烷酸系列化合物(图2-43)。

图2-43 苏丹原油样品酸甲酯组分的m/z191和m/z177质量色谱图

傅里叶红外光谱出峰位置在750,875,1000,1125,1250,1375,1750附近的是什么基团

1375应该是甲级,1750应该是羰基,但是,750和875会不会是取代基,你看1500和1600附近有没有基团,有的话那就应该是苯环的取代基了。1250那个也应该是羰基的

傅里叶红外光谱亚砜基的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于傅里叶红外光谱仪制样、傅里叶红外光谱亚砜基的信息别忘了在本站进行查找喔。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624