资讯

承天示优,优品至上。

傅里叶红外光谱温度范围(傅里叶红外光谱仪测的是什么)

承天示优官方账号 2023-03-19 资讯 571 views 0

今天的文章给大伙介绍下傅里叶红外光谱温度范围,和傅里叶红外光谱仪测的是什么相关的内容,希望能对小伙伴们有所帮助,记得不要忘记收藏下本站喔。

本文目录一览:

说明傅里叶红外光谱仪与色散型红外光谱仪的区别

红外光谱[1](infrared spectra),以波长或波数为横坐标以强度或其他随波长变化的性质为纵坐标所得到的反映红外射线与物质相互作用的谱图。按红外射线的波长范围,可粗略地分为近红外光谱(波段为0.8~2.5微米)、中红外光谱(2.5~25微米)和远红外光谱(25~1000微米)。对物质自发发射或受激发射的红外射线进行分光,可得到红外发射光谱,物质的红外发射光谱主要决定于物质的温度和化学组成;对被物质所吸收的红外射线进行分光,可得到红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,它是一种分子光谱。分子的红外吸收光谱属于带状光谱。原子也有红外发射和吸收光谱,但都是线状光谱。

量子场论或量子电动力学可以正确地描述和解释红外射线(一种电磁辐射)与物质的相互作用。若采用半经典的理论处理方法,即对组成物质的分子和原子作为量子力学体系来处理,辐射场作为一种经典物理中的电磁波并忽略其光子的特征,则分子红外光谱是由分子不停地作振动和转动而产生的。分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动模式。当孤立分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动。含N个原子的分子应有3N-6个简正振动方式;如果是线性分子,只有3N-5个简正振动方式。图中示出非线性3原子分子仅有的3种简正振动模式。分子的转动指的是分子绕质心进行的运动。分子振动和转动的能量不是连续的,而是量子化的。当分子由一种振动(或转动)状态跃迁至另一种振动(或转动)状态时,就要吸收或发射与其能级差相应的光。

研究红外光谱的方法主要是吸收光谱法。使用的光谱有两种类型。一种是单通道或多通道测量的棱镜或光栅色散型光谱仪,另一种是利用双光束干涉原理并进行干涉图的傅里叶变换数学处理的非色散型的傅里叶变换红外光谱仪。

红外光谱具有高度的特征性,不但可以用来研究分子的结构和化学键,如力常数的测定等,而且广泛地用于表征和鉴别各种化学物种。

红外识谱歌

红外可分远中近,中红特征指纹区,

1300来分界,注意横轴划分异。

看图要知红外仪,弄清物态液固气。

样品来源制样法,物化性能多联系。

识图先学饱和烃,三千以下看峰形。

2960、2870是甲基,2930、2850亚甲峰。

1470碳氢弯,1380甲基显。

二个甲基同一碳,1380分二半。

面内摇摆720,长链亚甲亦可辨。

烯氢伸展过三千,排除倍频和卤烷。

末端烯烃此峰强,只有一氢不明显。

化合物,又键偏,~1650会出现。

烯氢面外易变形,1000以下有强峰。

910端基氢,再有一氢990。

顺式二氢690,反式移至970;

单氢出峰820,干扰顺式难确定。

炔氢伸展三千三,峰强很大峰形尖。

三键伸展二千二,炔氢摇摆六百八。

芳烃呼吸很特征,1600~1430。

1650~2000,取代方式区分明。

900~650,面外弯曲定芳氢。

五氢吸收有两峰,700和750;

四氢只有750,二氢相邻830;

间二取代出三峰,700、780,880处孤立氢

醇酚羟基易缔合,三千三处有强峰。

C-O伸展吸收大,伯仲叔醇位不同。

1050伯醇显,1100乃是仲,

1150叔醇在,1230才是酚。

1110醚链伸,注意排除酯酸醇。

若与π键紧相连,二个吸收要看准,

1050对称峰,1250反对称。

苯环若有甲氧基,碳氢伸展2820。

次甲基二氧连苯环,930处有强峰,

环氧乙烷有三峰,1260环振动,

九百上下反对称,八百左右最特征。

缩醛酮,特殊醚,1110非缩酮。

酸酐也有C-O键,开链环酐有区别,

开链强宽一千一,环酐移至1250。

羰基伸展一千七,2720定醛基。

吸电效应波数高,共轭则向低频移。

张力促使振动快,环外双键可类比。

二千五到三千三,羧酸氢键峰形宽,

920,钝峰显,羧基可定二聚酸、

酸酐千八来偶合,双峰60严相隔,

链状酸酐高频强,环状酸酐高频弱。

羧酸盐,偶合生,羰基伸缩出双峰,

1600反对称,1400对称峰。

1740酯羰基,何酸可看碳氧展。

1180甲酸酯,1190是丙酸,

1220乙酸酯,1250芳香酸。

1600兔耳峰,常为邻苯二甲酸。

氮氢伸展三千四,每氢一峰很分明。

羰基伸展酰胺I,1660有强峰;

N-H变形酰胺II,1600分伯仲。

伯胺频高易重叠,仲酰固态1550;

碳氮伸展酰胺III,1400强峰显。

胺尖常有干扰见,N-H伸展三千三,

叔胺无峰仲胺单,伯胺双峰小而尖。

1600碳氢弯,芳香仲胺千五偏。

八百左右面内摇,确定最好变成盐。

伸展弯曲互靠近,伯胺盐三千强峰宽,

仲胺盐、叔胺盐,2700上下可分辨,

亚胺盐,更可怜,2000左右才可见。

硝基伸缩吸收大,相连基团可弄清。

1350、1500,分为对称反对称。

氨基酸,成内盐,3100~2100峰形宽。

1600、1400酸根展,1630、1510碳氢弯。

盐酸盐,羧基显,钠盐蛋白三千三。

矿物组成杂而乱,振动光谱远红端。

钝盐类,较简单,吸收峰,少而宽。

注意羟基水和铵,先记几种普通盐。

1100是硫酸根,1380硝酸盐,

1450碳酸根,一千左右看磷酸。

硅酸盐,一峰宽,1000真壮观。

勤学苦练多实践,红外识谱不算难。

红外光谱发展史

雨后天空出现的彩虹,是人类经常观测到的自然光谱。而真正意义上对光谱的研究是从英国科学家牛顿(Newton) 开始的。1666 年牛顿证明一束白光可分为一系列不同颜色的可见光,而这一系列的光投影到一个屏幕上出现了一条从紫色到红色的光带。牛顿导入“光谱”(spectrum)一词来描述这一现象。牛顿的研究是光谱科学开端的标志。

从牛顿之后人类对光的认识逐渐从可见光区扩展到红外和紫外区。1800 年英国科学家W. Herschel 将来自太阳的辐射构成一副与牛顿大致相同的光谱,然后将一支温度计通过不同颜色的光,并且用另外一支不在光谱中的温度计作为参考。他发现当温度计从光谱的紫色末端向红色末端移动时,温度计的读数逐渐上升。特别令人吃惊的是当温度计移动到红色末端之外的区域时,温度计上的读数达到最高。这个试验的结果有两重含义,首先是可见光区域红色末端之外还有看不见的其他辐射区域存在,其次是这种辐射能够产生热。由于这种射线存在的区域在可见光区末端以外而被称为红外线。(1801 年德国科学家J.W. Ritter 考察太阳光谱的另外一端,即紫色端时发现超出紫色端的区域内有某种能量存在并且能使AgCl 产生化学反应,该试验导致了紫外线的发现。

1881年Abney 和Festing 第一次将红外线用于分子结构的研究。他们Hilger光谱仪拍下了46个有机液体的从0.7到1.2微米区域的红外吸收光谱。由于这种仪器检测器的限制,所能够记录下的光谱波长范围十分有限。随后的重大突破是测辐射热仪的发明。1880年天文学家Langley在研究太阳和其他星球发出的热辐射时发明一种检测装置。该装置由一根细导线和一个线圈相连,当热辐射抵达导线时能够引起导线电阻非常微小的变化。而这种变化的大小与抵达辐射的大小成正比。这就是测辐射热仪的核心部分。用该仪器突破了照相的限制,能够在更宽的波长范围检测分子的红外光谱。采用NaCl作棱镜和测辐射热仪作检测器,瑞典科学家Angstrem第一次记录了分子的基本振动(从基态到第一激发态)频率。1889年Angstrem首次证实尽管CO和CO2都是由碳原子和氧原子组成,但因为是不同的气体分子而具有不同的红外光谱图。这个试验最根本的意义在于它表明了红外吸收产生的根源是分子而不是原子。而整个分子光谱学科就是建立在这个基础上的。不久Julius发表了20个有机液体的红外光谱图,并且将在3000cm-1的吸收带指认为甲基的特征吸收峰。这是科学家们第一次将分子的结构特征和光谱吸收峰的位置直接联系起来。图1是液体水和重水部分红外光谱图,主要为近红外部分。图中可观察到水分子在739和970nm处有吸收峰存在,这些峰都处在可见光区红色一端之外。由于氢键作用,液体水的红外光谱图比气态水的谱图要复杂得多。

红外光谱仪的研制可追溯的20 世纪初期。1908 年Coblentz 制备和应用了用氯化钠晶体为棱镜的红外光谱议;1910 年Wood 和Trowbridge6 研制了小阶梯光栅红外光谱议;1918 年Sleator 和Randall 研制出高分辨仪器。20 世纪40 年代开始研究双光束红外光谱议。1950 年由美国PE 公司开始商业化生产名为Perkin-Elmer 21 的双光束红外光谱议。与单光束光谱仪相比,双光束红外光谱议不需要由经过专门训练的光谱学家进行操作,能够很快的得到光谱图。因此Perkin-Elmer 21 很快在美国畅销。Perkin-Elmer 21 的问世大大的促进了红外光谱仪的普及。

现代红外光谱议是以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。傅立叶红外光谱仪的产生是一次革命性的飞跃。与传统的仪器相比,傅立叶红外光谱仪具有快速、高信噪比和高分辨率等特点。更重要的是傅立叶变换催生了许多新技术,例如步进扫描、时间分辨和红外成像等。这些新技术大大的拓宽了红外的应用领域,使得红外技术的发展产生了质的飞跃。如果采用分光的办法,这些技术是不可能实现的。这些技术的产生,大大的拓宽了红外技术的应用领域。 是用红外成像技术得到的地球表面温度分布和地球大气层中水蒸气含量图。没有傅立叶变换技术,不可能得到这样的图像。图1.2 Perkin-Elmer 21 双光束红外光谱议。该仪器是由美国Perkin-Elmer 公司1950 开始制造,是最早期商业化生产的双光束红外光谱议。

红外光谱的理论解释是建立在量子力学和群论的基础上的。1900 年普朗克在研究黑体辐射问题时,给出了著名的Plank 常数h, 表示能量的不连续性。量子力学从此走上历史舞台。1911 年W Nernst 指出分子振动和转动的运动形态的不连续性是量子理论的必然结果。1912 年丹麦物理化学家Niels Bjerrum 提出HCl 分子的振动是带负电的Cl 原子核带正电的H 原子之间的相对位移。分子的能量由平动、转动和振动组成,并且转动能量量子化的理论,该理论被称为旧量子理论或者半经典量子理论。后来矩阵、群论等数学和物理方法被应用于分子光谱理论。随着现代科学的不断发展,分子光谱的理论也在不断的发展和完善。分子光谱理论和应用的研究还在发展之中。多维分子光谱的理论和应用就是研究方向之一。

使用红外光谱仪测试样品有哪些注意事项?

使用红外光谱仪测试样品应该注意以下几种事项: 一、注意要符合规定的环境条件来使用,值得相信的红外光谱仪厂家提醒要注意实验室的温度以及相对湿度都应该在标准范围以内,所用电源应配备有稳压装置和接地线。为了更好的把关这些条件,红外实验室的面积不要太大,能放得下必须的仪器设备即可,但室内一定要有除湿装置。还有实验室里的CO2含量不能太高,因此实验室里的人数应尽量少,无关人员最好不要进入,还要注意适当通风换气。

二、为防止仪器受潮而影响使用寿命,红外光谱仪商家强调红外实验室应经常保持干燥,即使仪器不用,也应每周开机至少两次,每次半天,同时开除湿机除湿。特别是霉雨季节,最好是能每天开除湿机。还有使用红外光谱仪测定用样品应干燥,否则应在研细后置红外灯下烘几分钟使干燥。试样研好并具在模具中装好后,应与真空泵相连后抽真空至少2分钟,以使试样中的水分进一步被抽走,然后再加压到一定的标准后维持几分钟。

三、注意在使用红外光谱仪时,如供试品为盐酸盐,因考虑到在压片过程中可能出现的离子交换现象。红外光谱仪商家强调标准规定用氯化钾(也同溴化钾一样预处理后使用)代替溴化钾进行压片,但也可比较氯化钾压片和溴化钾压片后测得的光谱,如二者没有区别,则可使用溴化钾进行压片。

聚苯胺的合成方法是什么?

一 聚苯胺的合成方法

聚苯胺的合成方法很多,但常用的合成方法有两大类:化学合成和电化学合成。

(1) 化学合成法 化学合成法是利用氧化剂作为引发剂在酸性介质中使苯胺单体发生氧化聚合,具体实施方法有如下几种。

① 化学氧化聚合法 聚苯胺的化学氧化聚合法,是在酸性条件下用氧化剂使苯胺单体氧化聚合。质子酸是影响苯胺氧化聚合的重要因素,它主要起两方面的作用:提供反应介质所需要的pH值和以掺杂剂的形式进入聚苯胺骨架赋予其一定的导电性。聚合同时进行现场掺杂,聚合和掺杂同时完成。常用的氧化剂有:过氧化氢、重铬酸盐、过硫酸盐等。其合成反应主要受质子酸的种类及浓度,氧化剂的种类及浓度,单体浓度和反应温度、反应时间等因素的影响。化学氧化聚合法优点在于能大量生产聚苯胺,设备投资少,工艺简单,适合于实现工业化生产,是目前最常用的合成方法。

② 乳液聚合法 乳液聚合法是将引发剂加入含有苯胺及其衍生物的酸性乳液体系内的方法。乳液聚合法具有以下优点:采用环境友好且成本低廉的水作为热载体,产物无需沉淀分离以除去溶剂;合成的聚苯胺分子量和溶解性都较高;如采用大分子磺酸为表面活性剂,则可一步完成掺杂提高导电聚苯胺电导率;可将聚苯胺制成直接使用的乳状液,后续加工过程不必再使用昂贵或有毒的有机溶剂,简化了工艺,降低了成本,还可以克服传统方法合成聚苯胺不溶不熔的缺点。

③ 微乳液聚合法 微乳液聚合法是在乳液法基础上发展起来的。聚合体系由水、苯胺、表面活性剂、助表面活性剂组成。微乳液分散相液滴尺寸(10~100nm)小于普通乳液(10~200nm),非常有利于合成纳米级聚苯胺。纳米聚苯胺微粒不仅可能解决其难于加工成型的缺陷,且能集聚合物导电性和纳米微粒独特理化性质于一体,因此自1997年首次报道利用此法合成了最小粒径为5nm的聚苯胺微粒以来,微乳液法己经成为该领域的研究热点。目前常规O/W型微乳液用于合成聚苯胺纳米微粒常用表面活性剂有DBSA、十二烷基磺酸钠等,粒径约为10~40nm。反相微乳液法(W/O)用于制备聚苯胺纳米微粒可获得更小的粒径(10nm),且粒径分布更均匀。这是由于在反相微乳液水核内溶解的苯胺单体较之常规微乳液油核内的较少造成的。

④ 分散聚合法 苯胺分散聚合体系一般是由苯胺单体、水、分散剂、稳定剂和引发剂组成。反应前介质为均相体系,但所生成聚苯胺不溶于介质,当其达到临界链长后从介质中沉析出来,借助于稳定剂悬浮于介质中,形成类似于聚合物乳液的稳定分散体系。该法目前用于聚苯胺合成研究远不及上述三种实施方法

成熟,研究较少。

(2) 电化学合成法 聚苯胺的电化学聚合法主要有:恒电位法、恒电流法、动电位扫描法以及脉冲极化法。一般都是An在酸性溶液中,在阳极上进行聚合。电化学合成法制备聚苯胺是在含An的电解质溶液中,使An在阳极上发生氧化聚合反应,生成粘附于电极表面的聚苯胺薄膜或是沉积在电极表面的聚苯胺粉末。Diaz等人用电化学方法制备了聚苯胺薄膜。

目前主要采用电化学方法制备PANI电致变色膜,但是,采用电化学方法制备PANI电致变色膜时存在如下几点缺陷:不能大规模制备电致变色膜;PANI膜的力学性能较差;PANI膜与导电玻璃基底粘结性差。

二 聚苯胺的质子酸掺杂

导电聚合物的“掺杂”是指将导电聚合物从绝缘态转变成导电态时从其分子链中迁移出电子的过程。简单地说,掺杂就是将电子从导电聚合物价带顶部移出(p型掺杂,导电聚合物被氧化),或者向导带底部注入电子(n型掺杂,导电聚合物被还原),使导电聚合物离子化。而导电高聚物的“掺杂”与无机半导休“掺杂”有本质的差别,主要表现在:

(1) 无机半导体掺杂是原子的替代,而在导电高聚物的实质是掺杂剂与主链发生氧化还原反应,产生带电缺陷,两者生成电荷转移络合物;

(2) 无机半导体掺杂量极低(万分之几),而导电高聚物掺杂量可以很大,甚至超过聚合物自身质量;

(3) 无机半导体中不存在脱掺杂过程,而某些导电高聚物中不仅存在脱掺杂,而且掺杂脱掺杂过程完全可逆,进而进行二次或多次掺杂。

聚苯胺的质子酸掺杂机制不同于其它导电高聚物的氧化还原掺杂,后者通过掺杂电子受体或电子给予体总伴随着分子链上电子的得失,而聚苯胺的质子掺杂则不改变主链上的电子数目,只是质子进入高聚物链上才使链带正电,为维持电中性,对阴离子也进入高聚物链[27]。现有的研究表明[28],聚苯胺的胺基和亚胺基均可与质子酸反应生成胺盐和亚胺盐,但只有亚胺氮原子上的掺杂反应才对导电性有贡献。在两种氮原子都存在的情况下,亚胺的氮原子优先被质子化,有效掺杂必须存在醌式结构。用质子酸掺杂时,只是在主链上引入正电荷,为了维持电中性对阴离子也进入聚苯胺分子链中,如图1-4所示。

NH

xNN1 -x

脱 掺 杂 xHA 掺 杂N 1-yN+A-

掺 杂部 分 y1-x 未 掺 杂部 分

图1-4 PANI的掺杂过程

Fig. 1-4 Doping process of PANI

其中,x表示氧化程度,由合成来决定;y表示掺杂程度,由掺杂来决定:A-表示质子酸中的阴离子,由掺杂剂来决定。

根据聚苯胺掺杂过程和步骤的不同,质子酸掺杂可分为以下几种:一次掺杂、掺杂-脱掺杂-再掺杂、二次掺杂、共掺杂。

三 聚苯胺的导电机理

导电过程是载流子在电场作用下作定向运动的过程。高分子材料要能导电,必须具备两个条件:要能产生足够数量的载流子(电子、空穴或离子等);以及大分子链内和链间要能形成导电通道。导电聚合物的导电机理既不同于金属又不同于半导体,金属的载流子是自由电子,半导体的载流子是电子或空穴,而导电聚合物的载流子是“离域”π电子和由掺杂剂形成的孤子、极化子、双极化子等构成。

我国学者王慧中等人提出的掺杂态聚苯胺单极化子和双极化子相互转化的结构模型,比较合理的解释了聚苯胺的导电机理,如图1-5所示。

NH

BB

-O H

NHB+A-H+-A

+ *NH

A-NQN本征态 聚苯胺+NH-A+*NH

A-质子化NHNH分子内电 荷 转 移

NH

BnB+ *NH-A

BNHQ+*NH-A掺 杂态 聚苯胺

图1-5 掺杂态聚苯胺的导电机理

Fig. 1-5 Conductive mechanism of doped PANI

这一模型可以看出,掺杂态聚苯胺体系中,既有绝缘成分,也有各种导电成分,聚苯胺的分子链结构对导电性有很大的影响。

本征态的聚苯胺经质子酸掺杂后分子内的醌环消失,电子云重新分布,氮原子上的正电荷离域到大共轭π键中,而使聚苯胺呈现出高的导电性,掺杂前后的电导率变化可以高达9~10 个数量级。实验表明掺杂后的聚苯胺导电性能有极大的改善,其掺杂剂可以是质子酸、类质子酸、中性盐及某些氧化剂如NH4S2O8、FeCl3等。

四 性能测试方法

1.红外光谱分析 红外吸收光谱在高分子研究中是一种很有用的手段,目前普遍应用在分析与鉴别高聚物、高聚物反应的研究、共聚物研究、高聚物结晶形态的研究、高聚物取向的研究、聚合物表面的研究等方面[58]。样品与溴化钾(KBr)以大约1:100的比例混合,置于研磨中研磨成细粉,在5 MPa下将之压成试片。使用傅里叶红外光谱仪进行表征,光谱范围4000~400 cm-1;分辨率优于0.5 cm-1(可达0.2 cm-1);波数精度优于0.01 cm-1;透光率精度优于0.1 %T。

2.拉曼光谱分析 激光拉曼光谱和红外光谱在高聚物研究中可互补充。拉曼光谱在表征高分子链的碳-碳骨架振动方面更为有效,也可用于研究高聚物的结晶和取向[58]。使用显微拉曼光谱仪进行表征,光谱范围:3600~100 cm-1;分辨率:1~2 cm-1;激发波长:785 nm(固体激光器);光谱重复性:±0.2 cm-1;样品尺寸:不大于3cm×3cm×3cm。

3.热性能分析 热分析是测量在受控程序温度条件下,物质的物理性质随温度变化的函数关系的技术。这里所说的物质是指被测样品以及它的反应产物。程序温度一般采用线性程序,但也可能是温度的对数或倒数程序[59]。

利用综合热分析仪对样品进行热分析。该综合热分析仪集TG-DSC/DTA及Cp多方面测量功能于一身,主要参数为:温度测量范围-120~1650℃;比热测量范围0.1~5.0J/gK;比热测量精度5%;噪声影响(最大)15μW;温度精度1K;热焓精度±3%;真空度10-4 MPa;热重精度10-6g,热分析条件:Ar气氛,升温速率10℃/min,温度范围为30~700℃。测定加热过程中,各种薄膜的热重量损失及能量变化。

4.X射线衍射谱分析(XRD) XRD是物相分析最有效的手段之一。通过材料的X射线衍射图能过得到相关物质的元素组成、尺寸、离子间距等材料的精细结构方面的数据与信息[60]。取少量产物粉末约0.89铜靶,电压40.0kV,电流30.0mA,扫描范围2θ=5~45。和10~100。,扫描速度4。/min进行测试。

5.扫描电子显微镜分析(SEM) 扫描电子显微镜(SEM)作为一种直观的表征手段,通过直接的观察就可以确定聚合物形貌结构,如颗粒或纤维状、多孔或致密等[60]。一般认为,不同的掺杂阴离子将导致导电聚合物的成核与生长机理不同,因此产生形态各异的聚合物。

6.气敏特性测试 采用静态配气法,测试元件对某些气体的灵敏度及其响应-恢复时间。气体灵敏度的定义为S = Rg / Ra (Ra为空气中测得的电阻,Rg为待测气体中测得的电阻),响应-恢复时间为薄膜元件从接触和脱离检测气体开始到其阻值或阻值增量达到某一确定值的时间。主要技术参数:测试通道数:30路,采集速度:1次/秒,系统综合误差:<±1% ,电源:AC 220V±10% 50Hz,测试电源:Vh 2~10V连续可调 Max8A,Vc:2~10V 连续可调 Max1A,配气箱:外形尺寸 315mm×335mm×350mm;容积30L。

傅里叶红外光谱仪干什么用的,可以测哪些参数,都有什么意义?

傅里叶红外光谱仪(FT-IR)是分子吸收光谱,不同的官能团,化学键振动或转动,对不同波数的红外光有吸收,据此,可以测定出样品有哪些官能团或化学键存在或变化,用以物质的定性、定量、反应过程等的研究。

聚苯胺的合成

一 聚苯胺的合成方法

聚苯胺的合成方法很多,但常用的合成方法有两大类:化学合成和电化学合成。

(1) 化学合成法 化学合成法是利用氧化剂作为引发剂在酸性介质中使苯胺单体发生氧化聚合,具体实施方法有如下几种。

① 化学氧化聚合法 聚苯胺的化学氧化聚合法,是在酸性条件下用氧化剂使苯胺单体氧化聚合。质子酸是影响苯胺氧化聚合的重要因素,它主要起两方面的作用:提供反应介质所需要的pH值和以掺杂剂的形式进入聚苯胺骨架赋予其一定的导电性。聚合同时进行现场掺杂,聚合和掺杂同时完成。常用的氧化剂有:过氧化氢、重铬酸盐、过硫酸盐等。其合成反应主要受质子酸的种类及浓度,氧化剂的种类及浓度,单体浓度和反应温度、反应时间等因素的影响。化学氧化聚合法优点在于能大量生产聚苯胺,设备投资少,工艺简单,适合于实现工业化生产,是目前最常用的合成方法。

② 乳液聚合法 乳液聚合法是将引发剂加入含有苯胺及其衍生物的酸性乳液体系内的方法。乳液聚合法具有以下优点:采用环境友好且成本低廉的水作为热载体,产物无需沉淀分离以除去溶剂;合成的聚苯胺分子量和溶解性都较高;如采用大分子磺酸为表面活性剂,则可一步完成掺杂提高导电聚苯胺电导率;可将聚苯胺制成直接使用的乳状液,后续加工过程不必再使用昂贵或有毒的有机溶剂,简化了工艺,降低了成本,还可以克服传统方法合成聚苯胺不溶不熔的缺点。

③ 微乳液聚合法 微乳液聚合法是在乳液法基础上发展起来的。聚合体系由水、苯胺、表面活性剂、助表面活性剂组成。微乳液分散相液滴尺寸(10~100nm)小于普通乳液(10~200nm),非常有利于合成纳米级聚苯胺。纳米聚苯胺微粒不仅可能解决其难于加工成型的缺陷,且能集聚合物导电性和纳米微粒独特理化性质于一体,因此自1997年首次报道利用此法合成了最小粒径为5nm的聚苯胺微粒以来,微乳液法己经成为该领域的研究热点。目前常规O/W型微乳液用于合成聚苯胺纳米微粒常用表面活性剂有DBSA、十二烷基磺酸钠等,粒径约为10~40nm。反相微乳液法(W/O)用于制备聚苯胺纳米微粒可获得更小的粒径(10nm),且粒径分布更均匀。这是由于在反相微乳液水核内溶解的苯胺单体较之常规微乳液油核内的较少造成的。

④ 分散聚合法 苯胺分散聚合体系一般是由苯胺单体、水、分散剂、稳定剂和引发剂组成。反应前介质为均相体系,但所生成聚苯胺不溶于介质,当其达到临界链长后从介质中沉析出来,借助于稳定剂悬浮于介质中,形成类似于聚合物乳液的稳定分散体系。该法目前用于聚苯胺合成研究远不及上述三种实施方法

成熟,研究较少。

(2) 电化学合成法 聚苯胺的电化学聚合法主要有:恒电位法、恒电流法、动电位扫描法以及脉冲极化法。一般都是An在酸性溶液中,在阳极上进行聚合。电化学合成法制备聚苯胺是在含An的电解质溶液中,使An在阳极上发生氧化聚合反应,生成粘附于电极表面的聚苯胺薄膜或是沉积在电极表面的聚苯胺粉末。Diaz等人用电化学方法制备了聚苯胺薄膜。

目前主要采用电化学方法制备PANI电致变色膜,但是,采用电化学方法制备PANI电致变色膜时存在如下几点缺陷:不能大规模制备电致变色膜;PANI膜的力学性能较差;PANI膜与导电玻璃基底粘结性差。

二 聚苯胺的质子酸掺杂

导电聚合物的“掺杂”是指将导电聚合物从绝缘态转变成导电态时从其分子链中迁移出电子的过程。简单地说,掺杂就是将电子从导电聚合物价带顶部移出(p型掺杂,导电聚合物被氧化),或者向导带底部注入电子(n型掺杂,导电聚合物被还原),使导电聚合物离子化。而导电高聚物的“掺杂”与无机半导休“掺杂”有本质的差别,主要表现在:

(1) 无机半导体掺杂是原子的替代,而在导电高聚物的实质是掺杂剂与主链发生氧化还原反应,产生带电缺陷,两者生成电荷转移络合物;

(2) 无机半导体掺杂量极低(万分之几),而导电高聚物掺杂量可以很大,甚至超过聚合物自身质量;

(3) 无机半导体中不存在脱掺杂过程,而某些导电高聚物中不仅存在脱掺杂,而且掺杂脱掺杂过程完全可逆,进而进行二次或多次掺杂。

聚苯胺的质子酸掺杂机制不同于其它导电高聚物的氧化还原掺杂,后者通过掺杂电子受体或电子给予体总伴随着分子链上电子的得失,而聚苯胺的质子掺杂则不改变主链上的电子数目,只是质子进入高聚物链上才使链带正电,为维持电中性,对阴离子也进入高聚物链[27]。现有的研究表明[28],聚苯胺的胺基和亚胺基均可与质子酸反应生成胺盐和亚胺盐,但只有亚胺氮原子上的掺杂反应才对导电性有贡献。在两种氮原子都存在的情况下,亚胺的氮原子优先被质子化,有效掺杂必须存在醌式结构。用质子酸掺杂时,只是在主链上引入正电荷,为了维持电中性对阴离子也进入聚苯胺分子链中,如图1-4所示。

NH

xNN1 -x

脱 掺 杂 xHA 掺 杂N 1-yN+A-

掺 杂部 分 y1-x 未 掺 杂部 分

图1-4 PANI的掺杂过程

Fig. 1-4 Doping process of PANI

其中,x表示氧化程度,由合成来决定;y表示掺杂程度,由掺杂来决定:A-表示质子酸中的阴离子,由掺杂剂来决定。

根据聚苯胺掺杂过程和步骤的不同,质子酸掺杂可分为以下几种:一次掺杂、掺杂-脱掺杂-再掺杂、二次掺杂、共掺杂。

三 聚苯胺的导电机理

导电过程是载流子在电场作用下作定向运动的过程。高分子材料要能导电,必须具备两个条件:要能产生足够数量的载流子(电子、空穴或离子等);以及大分子链内和链间要能形成导电通道。导电聚合物的导电机理既不同于金属又不同于半导体,金属的载流子是自由电子,半导体的载流子是电子或空穴,而导电聚合物的载流子是“离域”π电子和由掺杂剂形成的孤子、极化子、双极化子等构成。

我国学者王慧中等人提出的掺杂态聚苯胺单极化子和双极化子相互转化的结构模型,比较合理的解释了聚苯胺的导电机理,如图1-5所示。

NH

BB

-O H

NHB+A-H+-A

+ *NH

A-NQN本征态 聚苯胺+NH-A+*NH

A-质子化NHNH分子内电 荷 转 移

NH

BnB+ *NH-A

BNHQ+*NH-A掺 杂态 聚苯胺

图1-5 掺杂态聚苯胺的导电机理

Fig. 1-5 Conductive mechanism of doped PANI

这一模型可以看出,掺杂态聚苯胺体系中,既有绝缘成分,也有各种导电成分,聚苯胺的分子链结构对导电性有很大的影响。

本征态的聚苯胺经质子酸掺杂后分子内的醌环消失,电子云重新分布,氮原子上的正电荷离域到大共轭π键中,而使聚苯胺呈现出高的导电性,掺杂前后的电导率变化可以高达9~10 个数量级。实验表明掺杂后的聚苯胺导电性能有极大的改善,其掺杂剂可以是质子酸、类质子酸、中性盐及某些氧化剂如NH4S2O8、FeCl3等。

四 性能测试方法

1.红外光谱分析 红外吸收光谱在高分子研究中是一种很有用的手段,目前普遍应用在分析与鉴别高聚物、高聚物反应的研究、共聚物研究、高聚物结晶形态的研究、高聚物取向的研究、聚合物表面的研究等方面[58]。样品与溴化钾(KBr)以大约1:100的比例混合,置于研磨中研磨成细粉,在5 MPa下将之压成试片。使用傅里叶红外光谱仪进行表征,光谱范围4000~400 cm-1;分辨率优于0.5 cm-1(可达0.2 cm-1);波数精度优于0.01 cm-1;透光率精度优于0.1 %T。

2.拉曼光谱分析 激光拉曼光谱和红外光谱在高聚物研究中可互补充。拉曼光谱在表征高分子链的碳-碳骨架振动方面更为有效,也可用于研究高聚物的结晶和取向[58]。使用显微拉曼光谱仪进行表征,光谱范围:3600~100 cm-1;分辨率:1~2 cm-1;激发波长:785 nm(固体激光器);光谱重复性:±0.2 cm-1;样品尺寸:不大于3cm×3cm×3cm。

3.热性能分析 热分析是测量在受控程序温度条件下,物质的物理性质随温度变化的函数关系的技术。这里所说的物质是指被测样品以及它的反应产物。程序温度一般采用线性程序,但也可能是温度的对数或倒数程序[59]。

利用综合热分析仪对样品进行热分析。该综合热分析仪集TG-DSC/DTA及Cp多方面测量功能于一身,主要参数为:温度测量范围-120~1650℃;比热测量范围0.1~5.0J/gK;比热测量精度5%;噪声影响(最大)15μW;温度精度1K;热焓精度±3%;真空度10-4 MPa;热重精度10-6g,热分析条件:Ar气氛,升温速率10℃/min,温度范围为30~700℃。测定加热过程中,各种薄膜的热重量损失及能量变化。

4.X射线衍射谱分析(XRD) XRD是物相分析最有效的手段之一。通过材料的X射线衍射图能过得到相关物质的元素组成、尺寸、离子间距等材料的精细结构方面的数据与信息[60]。取少量产物粉末约0.89铜靶,电压40.0kV,电流30.0mA,扫描范围2θ=5~45。和10~100。,扫描速度4。/min进行测试。

5.扫描电子显微镜分析(SEM) 扫描电子显微镜(SEM)作为一种直观的表征手段,通过直接的观察就可以确定聚合物形貌结构,如颗粒或纤维状、多孔或致密等[60]。一般认为,不同的掺杂阴离子将导致导电聚合物的成核与生长机理不同,因此产生形态各异的聚合物。

6.气敏特性测试 采用静态配气法,测试元件对某些气体的灵敏度及其响应-恢复时间。气体灵敏度的定义为S = Rg / Ra (Ra为空气中测得的电阻,Rg为待测气体中测得的电阻),响应-恢复时间为薄膜元件从接触和脱离检测气体开始到其阻值或阻值增量达到某一确定值的时间。主要技术参数:测试通道数:30路,采集速度:1次/秒,系统综合误差:<±1% ,电源:AC 220V±10% 50Hz,测试电源:Vh 2~10V连续可调 Max8A,Vc:2~10V 连续可调 Max1A,配气箱:外形尺寸 315mm×335mm×350mm;容积30L。

关于傅里叶红外光谱温度范围和傅里叶红外光谱仪测的是什么的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624