资讯

承天示优,优品至上。

傅里叶红外污染源分析仪中标(傅里叶变换红外光谱仪中标公告)

承天示优官方账号 2022-12-11 资讯 727 views 0

又到了我们给大家分享有关傅里叶红外污染源分析仪中标的时候了,同时我们也会对与之对应的傅里叶变换红外光谱仪中标公告进行一样的解释哦,希望小伙伴们可以仔细的阅读,如果能对你们正好有所帮助,记得支持一下本站哦。

本文目录一览:

傅立叶红外变换能检测那些物质?原理分别是什么?

傅立叶红外有两种一种是真对气体分析的,一种使普通的

一 气体分析

用于对现场环境空气的快速分析,可应用于应急监测,污染源调查,劳动卫生,消防,防化等领域GASMET Dx4020使用Temet独有傅立叶变换红外光谱仪、特制温控分析单元和信号处理电路,结构非常牢固,抗震性强,适于野外工作,是现场快速分析的理想工具。

GASMET Dx4020可同时分析中红外有吸收的气体,可选择不同量程范围,联机CALCMET分析软件有光谱库提供众多的成分供用户参考,可以分析出未知气体组分。

GASMET Dx4020的校准采用简单的每种组分分别标定,只需出厂进行一次初始标定后,无需再次标定。

升级组分方法非常简便,用户只需用新的组分标气进行一次标定即可完成。

日常维护工作量和费用很低,每1到2年进行一次检查维护。 GASMET Dx4020的技术参数及推荐配置 Gigar干涉仪:分辨率:8cm-1扫描速度:10次/秒检测器:PMCT

红外光源:Sic, 1550K分束器:ZnSe窗口:ZnSe波长范围:900 - 4200cm-1样气室Sample Cell工作温度:50oC

多次反射光程:9.8m材料:100% 黄金涂层反射镜:固定,黄金涂层体积:1.07L接口:Swagelok 6 mm or 1/4"密封:Viton®O-rings 数据接口 通讯:RS-232 D型9孔

内置采样泵

样气流量:2-10L/min尘过滤要求:2µ样气压力要求:大气

电源

220VAC 50Hz, 12VDC

CALCMET

图形分析工作站

出厂标定光谱库CalcmetLibrary

光普库搜索LibrarySearch

测量时间可选1秒-5分钟

自动存储测量光谱图

回放历史数据… …

附件

便携箱

12VDC 车载充电器及电缆线

12VDC 汽车电池夹及电缆线

充电电池组

标 定

50组分出厂标定

二普通型

适用于常规实验室分析使用。节省空间的主机,操作方便的界面,使学习操作IR系列非常容易。

IR100,系统内置交互式Encompass分析软件,高质量彩色大屏幕LCD显示分析谱图,不需要外接计算机,节省费用和实验室空间,标准鼠标控制软件操作,或选择触摸屏选项,分析软件界面直观,操作快速,功能完善。垂询电话:022-27465555

对于希望使用计算机控制FTIR并且要求软件操作方便的实验室来说, IR200是一个好的选择。

仅需要最少的培训时间,不需要学习使用复杂软件,可有更多的宝贵时间来分析您的样品,保证您在最短的分析时间内获得最可靠的分析结果。

江苏富铁坡缕石的结晶化学研究

尹琳1,2李真1郑意春1

(1.南京大学地球科学系,南京 2100932;2.江苏省凹土工程技术研究中心,南京 210093)

摘要 坡缕石晶体结构中的铁对其工业上的应用有着重要的影响,而江苏盱眙一带的坡缕石含有相对较高的铁含量。本文选取了盱眙富铁坡缕石样品进行研究,样品的平均结构式为(Si7.48Al0.52)(Al1.24Fe0.94Mg1.77Ti0.03□1.02)O20(OH)2(OH2)4。穆斯堡尔谱测试结果确定了铁离子以Fe3+占据了坡缕石八面体层中的内八面体位置。根据透射电镜能谱以及红外光谱分析,所研究样品显示了明显的二八面体特征。AlFe3+□OH和Fe3+Fe3+□OH振动的出现进一步确认了铁离子占据八面体层的内部位置[1~27]。

关键词 富铁坡缕石;八面体;穆斯堡尔谱;红外光谱。

第一作者简介:尹琳,南京大学地球科学系教授,兼任江苏省凹土工程技术研究中心副主任。电话:013305184358;E-mail:yinlin@nju.edu.cn。

坡缕石又名凹凸棒石,是一种层链状硅酸盐矿物。坡缕石的理想结构式为

中国非金属矿业

一般认为只有4/5的八面体位置被阳离子占据,而八面体层的中间位置(M1 位)常常以空位存在。还有学者进一步提出边缘八面体位置(M3位)常常被Mg2+离子占据。坡缕石被认为是兼有二八面体和三八面体性质的粘土矿物,红外光谱的研究也确证了这一特点。

坡缕石中的三价铁降低了坡缕石的白度,而且也影响了坡缕石的应用,铁的占位对于矿物的进一步研究具有重要的指示作用。穆斯堡尔谱数据认为70%的铁离子占据在八面体层的边缘位置。红外吸收光谱提出大部分铁占据在内部的M2位置。坡缕石样品的晶体结构还缺乏统一的认识,需要具体样品具体研究。

一、材料和实验方法

(一)材料

苏皖交界地区玄武岩比较发育,凹凸棒粘土矿床则广泛分布于玄武岩夹层中。坡缕石粘土在苏皖边境的古近-新近纪地层中呈广泛的带状分布。这一地区坡缕石储量巨大,矿点多,其化学性质也不尽相同。这一地区的坡缕石往往和石英、蒙脱石、蛋白石等矿物共生。

本文所研究的坡缕石样品采自盱眙的马腰山矿点。该矿点的样品呈现突出的富铁性质。原土常含有约5%的石英以及10%的非晶态物质,含有极少的蒙脱石。

(二)方法

原土样品(Pal-o)被提纯,提纯步骤如下:样品磨至400目以下,然后加入蒸馏水中,水土比为100∶1。混合均匀后加入1%(wB)聚丙烯酸钠(PAAS),同时在超声波中振荡。最后待胶体稳定后,除去沉淀,将胶体离心分离。在烘箱中110℃烘干得到纯坡缕石样品。

利用扫描电镜以及透射电镜,研究了坡缕石的纤维分布形态。透射电镜型号为JEOL JEM-2010,工作电压80 kV,装备有JED-2300T EDX型能谱仪,扫描电镜型号为LEO1530VP。

矿物物相分析采用了Rigaku D/max III-a型X衍射分析仪,工作条件为:铜靶,40 kV,40 mA;扫描范围3°~60°,步长0.02°。

57Fe穆斯堡尔谱由南京大学物理系自行组装的穆谱仪进行测试。工作条件为512 道、± 4.2mm/s、57Co/Pd源。结果采用MössWinn 3.0软件进行拟和。中心位移以α-Fe为基准。

傅里叶红外光谱(FTIR)在南京大学分析中心的Nexus 870 FTIR仪上进行分析。测试范围为400~4000 cm-1。

二、结果和讨论

(一)矿物结构形态

根据XRD分析结果(图1 和图2),原土中主要杂质是石英-蛋白石(图2)。透射和扫描电镜显示;①坡缕石中的蛋白石样品以“蛋白石球”形态生长在坡缕石表面(图2a);②坡缕石的纤维长度在0.5~2μm之间(图2b);③杂质矿物位于坡缕石纤维形成的束状结构中(图2c);④坡缕石纤维沿c轴方向生长(图2d)。

图1 富铁坡缕石原土(Pal-o) 和纯坡缕石(Pal-p)的X粉晶衍射图谱(Q=石英)

图2 马腰山样品的SEM以及TEM照片

(a)坡缕石粘土中的蛋白石球(Opal);(b) SEM镜下坡缕石的纤维形态;(c) TEM镜下可见纤维束状结构中的杂质(Impurity);(d)坡缕石纤维沿C轴方向排列

提纯后XRD图谱中的石英特征峰(0.3343nm)几乎消失,显示了可信的提纯效果(图1)。另外,TEM分析显示坡缕石纤维几乎是镜下能观察到的唯一矿物,表面杂质也基本被除去。当然,并不排除极少量的非晶态物质以及蒙脱石的存在。

TEM-EDS数据显示了即使是同一样品的坡缕石中不同纤维也具有变化的化学特征(表1)。马腰山样品的平均结构式为

中国非金属矿业

如表1,坡缕石四面体中的替代并不能被忽略,其四面体中每8个位置的Si,约有0.52个被Al3+替代。苏皖地区的坡缕石的四面体替代要明显高于其余样品。Galán & Carretero,1999年提出大多数坡缕石的化学特征介于二八面体和三八面体之间。而本文研究的样品每半个晶胞约含4个阳离子,显示了明显的二八面体特征。

表1 马腰山富铁坡缕石纯土的TEM-EDS分析结果

Pal-p样品显示明显的富铁特征,如表1,Pal-p样品每半个晶胞约含0.94个铁离子。其含铁量明显高于这一地区的其余样品。同时也高于García-Romero等人(2004)总结大量国外样品提出的平均每半个晶胞0.39个铁离子。Galán&Carretero 1999年总结了40多份样品的化学数据,最富铁的样品含0.87个铁离子。Fe3+替代了Al才导致坡缕石中Mg/Al大于1。根据这一论断以及表一所显示的低Al特征,Fe3+极有可能大量替代了八面体层中的Al才导致了此样品具有高铁低铝的特征。

图3 提纯富铁坡缕石的穆斯堡尔谱

表2 坡缕石的穆斯堡尔谱数据

注:ARG样品引自Augsburger等人(1998);Mt.F和Flor样品引自Heller-Kallai & Rozenson(1981)。

Γ表示对应峰的线宽;括号内数字表示末位误差范围。比率是F3+在八面体内部位和在八面体边缘位占据数量之比。

(二)穆斯堡尔谱研究

如图3所显示的Pal-p样品的穆谱数据,坡缕石并不含有针铁矿、磁铁矿以及赤铁矿等杂质,且铁都以Fe3+存在。其结构中应该含有两中铁的位置,分别对应谱图中的两套数据。在表1 中,两套数据显示了同质异能位移(I.S.)分别为0.35mm/s和0.37mm/s,表明铁以六配位的形势存在。铁离子的两种位置所占比例约为4∶1(表2)。Pal-p样品的其中一套数据显示了四极分裂值(Q.S.)为0.21mm/s.Heller-Kallai & Rozeson,1981年提出如此低的数据应该对应于八面体边缘的位置。另外一套数据的(Q.S.)值为0.50mm/s,认为这套数据应该对应内八面体的M2(顺位)位置。这套数据与先前研究的Flor样品非常相似,但是和其他在M1(反位)位含铁离子的样品数据相差较大,这也暗示了铁将和铝一起存在于M2位置。

穆谱数据显示大约21%的铁(每半个晶胞大约0.2个铁离子)占据内部八面体位置。这个比例和TEM-EDS数据是契合的:基于Mg将占据边缘的八面体位置,1.77个Mg将占据在边缘,空出约0.2个位置由铁来占据。

(三)红外光谱研究

位于911 cm-1和867 cm-1的两个峰,将它们分别指派给δ AlAl□OH and δ Al Fe3+□OH。在图4中,出现了类似两个峰,分别位于911 cm-1和865 cm-1。位于834 cm-1并指派给δ AlMg□OH的肩并没有在Pal-p的红外结果中出现。这表示没有Mg和Al一起存在于M2位置。位于823 cm-1的峰应该对应δFe3+Fe3+□OH,而Pal-p样品数据中也存在一个位于的822 cm-1峰。位于750 cm-1和800 cm-1之间的宽峰往往对应于燧石相或非晶态的其他含硅杂质,这些峰往往和δ-OH或δR-O重叠,难以分辨。400~600 cm-1和1000~1200 cm-1对应于粘土以及硅氧骨架结构的振动。

图4 提纯坡缕石Pal-p的FTIR的羟基弯曲振动区域

图5 提纯坡缕石Pal-p的FTIR的羟基伸缩振动区域

在羟基伸缩振动区域,出现了3616 cm-1,3581 cm-1和3552 cm-1三个强峰以及位于3404 cm-1的宽峰(图5)。先前研究中提出了类似的四个峰。

位于3616 cm-1的峰应该被指派给υ AlAl□OH。位于3550 cm-1和3410 cm-1的两个峰常常被认为是坡缕石中孔道边缘配位水和边缘阳离子的共同作用结果。但是Gionis等(2006)则提出位于3551 cm-1的峰应该归结于υ Fe3+Fe3+□OH振动,而且在逐步加热失水过程中,会偏移到3560 cm-1左右。考虑到他的结论也是基于富铁坡缕石的研究,所以将Pal-p样品红外结果中出现的3552 cm-1的峰指派给υ Fe3+Fe3+□OH应该更为合理。

位于3583 cm-1的峰应该是υ AlFe3+□OH 和配位水协同作用的结果。而在贫铁坡缕石样品中,3577~3592 cm-1范围内的峰要不就以肩的形式出现要不就甚至消失。而在Pal-p样品的红外结果中,存在位于3581 cm-1的峰,表明了υ AlFe3+□OH振动的存在。先前的研究认为Mg主要占据边缘的M3位置而Al主要占据内部M2位置。因此,在马腰山样品中未有υ RMg□OH形式的振动出现,表明Mg的确占据在边缘位置(图6b)。

一般认为,位于3680 cm-1的弱峰应该被指派给υ Mg3OH,但是Pal-p样品并没有显示出这个峰。联系到样品每半个晶胞平均有1.77(<2)个Mg离子,不会有多余的Mg占据到内部八面体位置和Al或者Fe形成振动组合。

图6 坡缕石八面体层中的阳离子分布图

(a) GÜven(1992年)提出的理论模型中的三种八面体位置;(b)马腰山富铁样品八面体层阳离子的可能分布

AlFe3+□OH和Fe3+Fe3+□OH的羟基振动组合表明Fe和Al占据了内部八面体的位置。而Pal-p样品中RR□OH振动的出现表明了具有二八面体特征。GÜven(1992)提出了坡缕石晶体结构的模型,认为Mg占据边缘位置;M2位置被Al或者Fe占据;M1位置是空位(图6a)。Pal-p样品的阳离子占据模式大体类似,不同之处在于有大约0.2个铁占据了边缘位置从而使边缘的占位趋于饱和(图6b)。

三、结论

通过研究了盱眙马腰山矿点的富铁坡缕石样品,根据化学分析,其每半个结构单元中的5个位置有4个位置被阳离子占据,其中平均含有0.94个铁离子。铁含量要明显高于苏皖其他地区以及国外已经研究的样品。

穆斯堡尔谱表明铁在坡缕石中以Fe3+的形式存在,并没有Fe2+出现。另外穆谱分解出的两套数据对应于两种铁的位置(M2和M3),其比例约为4∶1,大部分铁占据内部八面体位置。

AlFe3+□OH和Fe3+Fe3+□OH振动的出现进一步表明有铁占据了内部八面体位置。此外红外分析和化学分析也表明马腰山样品属于二八面体型坡缕石。

参考文献

[1]Augsburger M S,Predregosa J C,Strasser E,Perino E&Mercader R C.FTIR and Mössbauer investigation of a substituted palygorskite:Silicate with a channel structure.Journal of Physics and Chemistry of Solids,1998,59:175-185

[2]Bailey S W.Structure of layer silicates:pp.2—115 in:Crystal Structures of Clay Minerals and their X-ray Identification(G.W.Brindley and G.Brown,editors) .(M) 5,1984,Mineralogical Society,London

[3]Blanco C,Herrero J,Mendioroz S&Pajares J A.Infrared studies of surface acidity and reversible folding in palygorskite.Clays and Clay Minerals,1988,36:659-673

[4]Blanco C,Gonzalez F,Pesquera C,Benito I,Mendioroz S&Pajares J A.Difference between one aluminic palygorskite and another magnesic by infrared spectroscopy.Spectroscopy Letters,1989,22:659-673

[5]Bradley W F.The structural scheme of attapulgite.American Mineralogist,1940,25:405-410

[6]蔡元峰,薛纪越.安徽官山两种坡缕石粘土的成分与红外吸收光谱.矿物学报,2001,21(3):323-329

[7]Cai Y &Xue J.Dissolution behavior and dissolution mechanism of palygorskite in HCl solution.Progress in Natural Science,2004,14:235-240

[8]Chahi A,Petit S&Decarreau A.Infrared evidence of dioctahedral-trioctahedral site occupancy in palygorskite.Clays and Clay Minerals,2002,50:306-313

[9]Drits V A & Aleksandrova V A.The crystallochemical nature of palygorskite.Zapiske.Vsesoyuznogo Mineralogecheskogo Obtechestva,1996,95:551-560

[10]Drits V A & Sokolova G V.Structure of palygorskite.Soviet Physica Crystallographiya,1971,16:183-185

[11]Farmer V C.The layer silicates.pp.331—364 in:The infrared spectra of minerals.(M) 4,1974,Mineralogical Society,London

[12]Galán E & Carretero I.A new approach to composition limites for sepiolite and palygorskite.Clays and Clay Minerals,1999,47:399-409

[13]García-Romero E,Suárez M&Bustillo M A.Characteristics of a Mg-palygorskite in Miocene rocks,Madrid Basin(Spain) .Clays and Clay Minerals,2004,52:484-494

[14]Suárez M & García-Romero E.FTIR spectroscopic study of palygorskite:Influence of the composition of the octahedral sheet.Applied Clay Science,2006,31:154-163

[15]Gionis V,Kacandes G H,Kastritis I D & Chryssikos G D On the structure of palygorskite by mid-and near-infrared spectroscopy.American Mineralogist,2006,91:1125-1133

[16]GÜven N.The coordination of aluminum ions in the palygorskite structure.Clays and Clay Minerals,1992,40:457-461

[17]Heller-Kallai L & Rozenson I.The use of MÖssbauer spectroscopy of iron in clay mineralogy.Phys.Chem.Minerals,1981a,7:223-238

[18]Heller-Kallai L & Rozeson I.MÖssbauer studies of palygorskite and some aspects of palygorskite mineralogy.Clays and Clay Minerals,1981b,29:226-232

[19]Khorami J&Lemieux A.Comparison of attupulgites from different sources using TG/DTG and FTIR.Thermochimica Acta,1989,138:97-105

[20]Long D G F,McDonald A M & Yi F.Palygorskite in palaeosols from the Miocene Xiaocaowan Formation of Jiangsu and Anhui Provinces,PR.China.Sedimentary Geology,1997,112:287-285

[21]Madejová J& Komadel P.Baseline studies of the Clay Minerals Society source clays:Infrared studies.Clays and Clay Minerals,2001,49:410-432

[22]Russell J D & Fraser A R.Infrared methods.Pp.11—67 in:Clay Mineralogy:Spectroscopic and Chemical Determinative Methods(M.J.Wilson,editor) .1994,Champman & Hall,London

[23]Serna C,VanScoyoc G E & Ahlrichs J L Hydroxyl groups and waters in palygorskite.American Mineralogist,1997,62:784-792

[24]Van Scoyoc G E,Serna C&Ahlrichset J L Structural changes in palygorskite during dehydration and dehydroxylation.American Mineralogist,1979,64:215-223

[25]Woessner D E.Characterization of clay minerals by 27Al nuclear magnetic resonance spectroscopy.American Mineralogist,1989,74:203-215

[26]熊飞,尹琳,蔡元峰等.凹凸棒石粘土中坡缕石的内标法X衍射定量分析研究.高校地质学报,2005,11(3):453-458

[27]郑自立.中国坡缕石.北京:地质出版社,1997,26-45

Crystallo-chemistry of Fe-rich Palygorskite from Jiangsu Province

Lin Yin1,2,Li Zhen1,Zheng Yichun

(1.Department of Earth Science,Nanjing University,Nanjing 210093,China;2.Research Center of Engineering & Technology of Attapulgite,Nanjing 210093,China)

Abstract:Iron cations in the octahedral sheets interfere the industrial application of palygorskite clays.In this study,a palygorskite sample from Eastern China revealed its obvious iron-rich characters,iron content of which is remarkably higher than that of others.Structural formula of the Fe-rich palygorskite sample was established as(Si7.48Al0.52)(Al1.24Fe0.94Mg1.77Ti0.03□1.02) O20(OH)2(OH2)4.Mössbauer spectrum confirmed that iron ions occupy inner octahedral sites in the octahedral layers as trivalent Fe cations.Studied palygorskite sample revealed dioctahedral features according to structural formulae and FTIR data.Occurrences of AlFe3+□OH and Fe3+Fe3+□OH vibrations in the OH-stretching and bending regions also further confirmed that Fe ions occupy inner sites of octahedral layers in iron-rich palygorskite studied.

Key words:Fe-rich palygorskite,octahedral occupancy,Mössbauer,FTIR.

傅里叶红外光谱仪的用处

一、酒制品检测分析

不同产地的葡萄酒具有不同的质量与风格,市场上葡萄酒以假乱真、以次充好现象颇多,寻找简单有效地鉴别葡萄酒产区的方法,有利于葡萄酒市场的健康发展。向伶俐等人采用近、中红外光谱的贝叶斯信息融合技术对葡萄酒原产地进行快速识别,建模集准确率为87.11 %,检验集准确率为90.87 %,提高判别的准确度,为葡萄酒原产地真伪识别提供了一种高效低成本的新方法。

此外,利用红外光谱对白酒年份与香型鉴别也有十分效。因不同香型白酒的成分有所差异,其红外光谱也不尽相同,可根据红外光谱差异鉴别不同年份的白酒。

二、蜂蜜检测分析

我国蜂蜜质量参差不齐,掺假现象也较为严重。孙燕等利用中红外图谱分析仪结合化学计量软件建立饶河黑蜂蜂蜜产地真假判别模型判别饶河本地的蜂蜜样品和其它地区蜂蜜样品,准确率达90.3 %,为蜂蜜真伪鉴别提供了一种有效的方法。

三、谷类检测分析

近年来,少数造假者频频在陈旧大米中涂抹掺加植物油、矿物油,增加其亮度和光泽,冒充优质新鲜大米销售,严重危害消费者身心健康。张耀武等利用红外光谱对涂有和掺有矿物油的大米进行定性鉴别。

将分离出含有矿物油的试样进行红外光谱测试,未出现 1745 cm-1脂 C=O 的伸缩振动吸收和1000~1300 cm-1伸缩振动吸收,证明该试样中含有直链烷烃的矿物油。文中指出该方法可用于对大米、饼干、瓜子和食用油中是否掺加工业矿物油的鉴定。粮食在高温高湿条件下极易发霉变质,不仅造成经济损失还严重威胁人畜健康。

刘凌平等利用傅里叶变换衰减全反射红外光谱技术结合化学计量学方法(ART-FTIR),对稻谷中7 种常见有害霉菌进行了快速鉴定,建立的线性判别分析和偏最小二乘判别分析模型对7种不同类别菌株的留一交互验证整体正确率分别达到 87.1 %和87.3 %,表明ART-FTIR 技术技术可用于谷物中霉菌不同属间的快速鉴别,尤其对不同菌属的霉菌具有良好的判别效果。

四、果蔬检测分析

果蔬中农药残留快速、高效的检测技术是当前食品安全控制关注的重大问题。朱春艳用傅里叶红外光谱技术对敌百虫和辛硫磷两种农药的红外光谱进行了测量和分析。

验证了FTIR/ATR技术快速检测蔬菜中有机磷农药残留的可行性,测定敌百虫的最低的检测限为0.2×10-6(体积分数),相关系数为0.9141,辛硫磷的最低检测限为0.02×10-6,相关系数为0.9036,为果蔬农药残留检测提供了一种方便、快捷、准确的方法。

扩展资料:

傅里叶变换红外光谱仪主要由红外光源、分束器、干涉仪、样品池、探测器、计算机数据处理系统、记录系统等组成。

(1)光源:傅里叶变换红外光谱仪为测定不同范围的光谱而设置有多个光源。通常用的是钨丝灯或碘钨 灯(近红外)、硅碳棒(中红外)、高压汞灯及氧化钍灯(远红外)。

(2)分束器:分束器是迈克尔逊干涉仪的关键元件。其作用是将入射光束分成反射和透射两部分,然后 再使之复合,如果可动镜使两束光造成一定的光程差,则复合光束即可造成相长或相消干涉。

对分束器的要求是:应在波数v处使入射光束透射和反射各半,此时被调制的光束振幅最大。根据使用 波段范围不同,在不同介质材料上加相应的表面涂层,即构成分束器。

(3)探测器:傅里叶变换红外光谱仪所用的探测器与色散型红外分光光度计所用的探测器无本质的区 别。常用的探测器有硫酸三甘钛(TGS)、铌酸钡锶、碲镉汞、锑化铟等。

(4)数据处理系统:傅里叶变换红外光谱仪数据处理系统的核心是计算机,功能是控制仪器的操作,收集 数据和处理数据。

参考资料:百度百科——傅里叶红外光谱仪

关于傅里叶红外污染源分析仪中标和傅里叶变换红外光谱仪中标公告的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624