资讯

承天示优,优品至上。

傅立叶变换红外光谱仪国标(傅立叶变换红外光谱仪的测试原理)

承天示优官方账号 2022-11-29 资讯 869 views 0

今天给朋友们分享一下有关傅立叶变换红外光谱仪国标的知识,其中当然也会对傅立叶变换红外光谱仪的测试原理进行一部分的介绍,加入能碰巧解决你现在遇到的困难,不要忘了关注本站,那我们现在开始吧!

本文目录一览:

红外线用什么仪器测量发射量?

红外分光光度计,傅立叶变红外光谱仪

傅里叶变换红外光谱仪主要由迈克尔逊干涉仪和计算机组成。迈克尔逊干涉仪的主要功能是使光源发 出的光分为两束后形成一定的光程差,再使之复合以产生干涉,所得到的干涉图函数包含了光源的全部频率 和强度信息。用计算机将干涉图函数进行傅里叶变换,就可计算出原来光源的强度按频率的分布。[1]它克服了色散型光谱仪分辨能力低、光能量输出小、光谱范围窄、测量时间长等缺点。它不仅可以测量各种气体、固体、液体样品的吸收、反射光谱等,而且可用于短时间化学反应测量。红外光谱仪在电子、化工、医学等领域均有着广泛的应用。[2]傅里叶变换红外(Fourier Transform Infrared,FTIR)光谱仪主要由红外光源、分束器、干涉仪、样品池、探测器、计算机数据处理系统、记录系统等组成,是干涉型红外光谱仪的典型代表,不同于色散型红外仪的工作原理,它没有单色器和狭缝,利用迈克尔逊干涉仪获得入射光的干涉图,然后通过傅里叶数学变换,把时间域函数干涉图变换为频率域函数图(普通的红外光谱图)。[3]

(1)光源:傅里叶变换红外光谱仪为测定不同范围的光谱而设置有多个光源。通常用的是钨丝灯或碘钨 灯(近红外)、硅碳棒(中红外)、高压汞灯及氧化钍灯(远红外)。

(2)分束器:分束器是迈克尔逊干涉仪的关键元件。其作用是将入射光束分成反射和透射两部分,然后 再使之复合,如果可动镜使两束光造成一定的光程差,则复合光束即可造成相长或相消干涉。

对分束器的要求是:应在波数v处使入射光束透射和反射各半,此时被调制的光束振幅最大。根据使用 波段范围不同,在不同介质材料上加相应的表面涂层,即构成分束器。

(3)探测器:傅里叶变换红外光谱仪所用的探测器与色散型红外分光光度计所用的探测器无本质的区 别。常用的探测器有硫酸三甘钛(TGS)、铌酸钡锶、碲镉汞、锑化铟等。

(4)数据处理系统:傅里叶变换红外光谱仪数据处理系统的核心是计算机,功能是控制仪器的操作,收集 数据和处理数据。[1

FTIR分析仪是什么

FTIR 傅氏转换红外线光谱分析仪(Fourier Transform infrared spectroscopy)

用于半导体制造业.FTIR乃利用红外线光谱经傅利叶转换进而分析杂质浓度的光谱分析仪器.

目的:·已发展成熟,可Routine应用者,计 有: A.BPSG/PSG之含磷、含硼量预测. B.芯片之含氧、含碳量预测. C.磊晶之厚度量测.·

发展中需进一步Setup者有: A.氮化硅中氢含量预测. B.复晶硅中含氧量预测. C.光阻特性分析.FTIR为一极便利之分析仪器,STD的建立为整个量测之重点,由于其中多利用光学原理、芯片状况(i.e.晶背处理状况)对量测结果影响至钜.

目前所有的红外光谱仪都是都是傅里叶变换型的,光谱仪主要由光源(硅碳棒、高压汞灯)、迈克尔逊干涉仪、检测器和干涉仪组成.而傅里叶变换红外光谱仪的核心部分是迈克尔逊干涉仪,把样品放在检测器前,由于样品对某些频率的红外光产生吸收,使检测器接受到的干涉光强度发生变化,从而得到各种不同样品的干涉图.这种干涉图是光随动镜移动距离的变化曲线,借助傅里叶变换函数可得到光强随频率变化的频域图.这一过程可有计算机完成.

用傅里叶变换红外光谱仪测量样品的红外光谱包括以下几个步骤:

1)、分别收集背景(无样品时)的干涉图及样品的干涉图;

2)、分别通过傅里叶变换将上述干涉图转化为单光束红外光;

3)、将样品的单光束光谱处以背景的单光束光谱,得到样品的透射光谱或吸收光谱.

参考百科

最近要买一台红外光谱仪,看了仪器的配置指标,其中的P-P指标一项是:优于8.68*10-6Abs,谁能告诉我

信噪比(signal-to-noise ratio,简记为SNR ),顾名思义,就是信号值与噪声值的比,这一比值当然是越高越好。可是,翻遍《GB/T 21186-2007 傅立叶变换红外光谱仪》,《GB/T 6040-2002 红外光谱分析方法通则》(见红外光谱相关标准与检定规程大合集)以及其他的一些行业性、地方性的检定规程(国家级的傅里叶变换红外光谱仪检定规程至今还未出台),甚至中国药典,愣是找不到关于信噪比的只言片语的定义。信噪比指标对红外仪器性能的评判很重要,怎么会找不找呢?且慢,注意标准中屡屡提到的“基线噪声”(100%T线噪声)XXXX:1或1:XXXX,还往往标了P-P或RMS,这不就是我们熟悉的信噪比的表示方法吗?哈哈,总算找到你了。

艰难的看过标准上的描述(没办法,中国国标写的水平就是高!?),为了各位同学能够顺利读懂,我将它写为白话现代汉语版:

红外信噪比,是通过基线(100%T线)噪声来表征。也就是,在样品室中不放样品的情况下(空光路),测得一条假定理想的100%T透射光谱。信号,当然就是100%T了,如果没有噪声,那么这条光谱将是一条严格的纵坐标为100%T的直线,但是,实际情况是噪声总是存在的,这就使得这条光谱的各个波数点上的值不见得一定是100%T,可能高一些(比如100.1%T),也可能低一些(比如99.9%T)。P-P(峰-峰值)噪声的意思就是说刚才测得的那条光谱在某一段波数区间内(比如2200~2100cm-1)的最大值与最小值之差,比如说是100.1%T-99.9%T=0.2%T。前面说了,信号是假定为100%T,那么,根据信噪比的定义,信号值/噪声值,比如100%T/0.2%T=500(注意此处单位相消,也就是说,信噪比用信号噪声比值表示的话,是一个无量纲的数)。此时,我们可以说,这台红外光谱仪的信噪比是500:1。换句话说,我们知道了P-P(峰-峰值)噪声,我们也就自然知道了 P-P值信噪比;同理,我们知道了P-P值信噪比,比如500:1,那么我们很自然的也能利用噪声=信号/信噪比,即100%T/500=0.2%T,得到P-P噪声值的大小为0.2%T。

有人说,为了避免小概率事件的发生(此君是彩票迷,鉴定完毕!),噪声值应该用更具代表性和统计性的 RMS(均方根值)噪声来表示。那啥是RMS呢?我不得不祭出万恶的数学公式(霍金一部《时间简史》,只用了一个公式。我这个小小的原创这么早就出公式了。我不如霍金。。。)

设{Y1, Y2, Y3, …YN}为给定波数区间内N个连续波数点对应的纵坐标值(按照前述条件下,为一系列%T透过率值),则这些值的均值为:

均方根(root mean square,简记为RMS)偏差为:

如果不用公式,通俗地讲,均方根值就是一组数的平方的平均值的平方根;均方根偏差就是一组数与这组数均值之差的平方的平均值的平方根。所以,你瞧,我早早放弃了只用文字叙述,还是看看万恶的公式吧。显然,用上式求得的一条光谱在某波数(横坐标)区间内全部N个数据点纵坐标值的均方根偏差就作为了RMS噪声的度量。

一般对红外光谱来讲,P-P(峰-峰值)噪声会比RMS(均方根值)噪声大5倍左右,换句话说,RMS噪声的绝对数值更小,换算成信噪比时就更大,所以你发现用RMS值表示的信噪比往往看起来都很漂亮也就不奇怪了,因为它比P-P值表示的信噪比大了5倍(而且,显然参与运算的波数点越多,这一倍数还会增加)。

上面的“基线噪声”都是用了100%T基线,对应的是透射光谱的透过率表示形式;国际上越来越多的地方采用透射光谱的吸光度表示形式,此时的“基线”自然变成了0A基线。该“零基线”上的噪声单位,显然也就变成了A(吸光度单位,有时写做AU)。此时,计算P- P噪声和RMS噪声的方法与前面完全一样。但是,因为这些基线都是在样品室中不放样品的情况下(空光路)测得的,所以此时的信号应该是0A,如果直接计算信噪比的话,0/噪声=0,显然得不到明确的有意义数值。所以有很多同学这个地方就会糊涂了,由吸光度表示的基线噪声值,怎么得到信噪比?在此,zwyu 独家奉献推导过程(呵呵,反正市面上所有的资料里都没写,可能觉得太简单了吧。):

前面讲到,因为测量吸光度基线噪声时,假定的信号就是 0A(相当于没有信号),导致所有的计算归零。那么,绕开这一“归零窘境”的关键就是不用0A,而采用等效的100%T,因为前面用100%T基线噪声时计算信噪比已经证明是行得通的。所以,要做的工作就是将0A基线时的噪声等效为100%T基线时的噪声。由吸光度与透射率之间的转换关系:

设此时信号为1(即100%),考虑到将A坐标下的噪声A-0转换到%T坐标下的噪声1-T(为简化起见,将100%记为1,T则不再乘100),则根据信噪比SNR的定义,

这里的A就是0A基线下给出的基线噪声值(如果你怕将它和吸光度单位A混淆,请自行将公式中的变量A换为任意字母代替)。后面我会结合实例,验证我这一推导公式。显然A值越小,得到的信噪比越大,也就是说基线噪声值越小越好,这也与我们的认知相一致。

看罢这粉墨登场的诸多款红外光谱仪和它们的参数,我不知道诸位同学晕了吗?反正,如本文开头所述,玩了一辈子红外光谱的翁老爷子晕了。。。

老爷子之所以会晕的原因,不是他老人家红外经验少,更不是看的不认真,而是——各个标准之间,各个红外厂商的宣传资料之间,对红外信噪比实际测量时的诸多具体参数设置,根本不一致(用翁老爷子的原话就是“测定的条件不相同”)。或许,“因编者水平有限,难免会出现一些错误和疏漏”;或许,本来就是有人希望搞出这种不一致来以混淆视听;或许,家家有本难念的经。。。总之,苦了各位同学了。

先抛开这些让人纠结的具体参数,只看最终的结果。我们很容易发现,红外厂商之间最通用的信噪比表示方法一般有两种:5S(秒钟)P-P值信噪比和1Min(分钟)P-P值信噪比,但也有只给出了5S P-P值信噪比(如Varian)或只给出了1Min P-P值信噪比(如Shimadzu)的例外。为了统一起见,需要知道5S和1Min P-P值信噪比之间的换算关系。

在这里,提前谈一下扫描时间(在实际参数设置时,更直接的说,是扫描次数)这一参数对红外信噪比的影响。因为测量红外光谱时,检测器噪声占了总噪声的主要部分,而检测器噪声又与信号水平不成正比,或者说是噪声是随机的且与信号电平无关。那么,我们很容易想到通过多次测量求均值的办法来提高信噪比。而从数学上可以证明,n次测量平均的结果是信噪比可以提高到1次测量的倍。比如,4次叠加平均信噪比提高2倍,16次叠加平均信噪比提高4倍,32次叠加平均信噪比提高5.6倍,64次叠加平均信噪比提高8倍,128次叠加平均信噪比提高11.3倍。。。我们一般在使用红外光谱仪(FTIR)进行测量时,常选的叠加平均次数是16或32,这也是因为此时能达到最经济的效能。次数过少,信噪比提高的有限;次数过多,测量时间会很长,反而得不偿失。而且注意这里说的是FTIR,对于光栅红外来讲,扫一次全谱甚至需要几到几十分钟的时间,现代的实验人员不会疯狂到叠加平均多次从而花掉一天的时间来得到一张光谱。而对FTIR来说,扫一次全谱花掉的时间只有1S左右,完全可以多次扫描叠加平均来有效的提高信噪比。那么,问题来了,1Min扫描相比5S扫描,多扫了多少次呢?或者说,1Min扫描,红外光谱仪内部叠加扫描了多少次,5S扫描,又是叠加多少次呢?幸运的是,前述各厂家给出信噪比指标的时候,都使用的是分辨率为4cm-1时的数据,也就是说,此时扫描时间和扫描次数基本上成一个简单的正比关系。5S:60S=1:12,可以简单的认为,1Min扫描的次数是5S扫描次数的12倍,套用前面给出的关系,也就是说,预期信噪比可以提高3.5倍。让我们来看一下这两个信噪比数据都给出了的厂家提供的数据:

Thermo/Nicolet公司的iS10:1Min P-P值信噪比:5S P-P值信噪比=35000:10000=3.5,完全符合我们的推论。

PE公司的Spectrum 100 :1Min P-P值信噪比:5S P-P值信噪比=36000:10500=3.4,基本符合。

Bruker 公司的TENSOR 37:1Min P-P值信噪比:5S P-P值信噪比=45000:8000=5.6,与我们的预期值偏差较大。我们注意到这两个数据Bruker公司将它标为了“可达”,而不是“最少”(标为“最少”的,只有5S P-P值信噪比=6000:1这一个数据)。换句话说,1Min扫描信噪比能够比5S扫描提高5.6倍,这只是可能发生的最好情况,而不是一定保证的数据 。由于我们前面给出的“n次测量平均的结果是信噪比可以提高到1次测量的倍” 这一结论已经是理想情况下的数值了,实际情况可能还达不到这一效果,那么,Bruker公司的提高5.6倍,远超理论上限值3.5倍的数据,又是怎么来的呢?这就又不得不提到一个扫描速度的问题。前面说过,现代的FTIR扫一次全谱(4000~400cm-1)花掉的时间只有1S左右,当然,它有“左”也有“右”了。如果扫描一次正好需要1S时间,那么,5S内,光谱仪共扫了5次,1Min内,共扫了60次,这就是我们前面用到的数据。但是,如果1次扫描需要花费的时间不止1S呢?比如说,是1.5S,那么,光谱仪在5S内的完整扫描次数只有3次(还有1次未完成,不参与叠加平均),而在1Min时间内能够正好完成40次扫描,理论上1Min扫描信噪比能提高3.7倍,比之前的3.5倍高了一些。更极端一点,假定完成1次扫描恰好需要2.51S,则5S内只能完成1次完整扫描(剩下的2.49S白忙乎了),而1Min内能够完成23次完整扫描,理论上信噪比能提高4.8倍,比之前估计的3.5倍又提高了不少。但这与5.6倍还是有一定距离。到这儿,zwyu也解释不下去了。但好在Bruker公司的宣传资料也很明显的提示我们了,5.6倍的提高只是“最好情况”,所以我们在这也不必再深究“为什么”了,不过请正在使用TENSOR 37或27的朋友,告诉我一下在光谱分辨率为4cm-1时,使用DTGS检测器,其它参数全部使用默认设置,扫描4000~400cm-1全谱一次需要多长时间?连续扫描1Min又能扫描完成几次?谢谢!

好了,不考虑Bruker数据的特殊情况,采用3.5倍这一比较正常的换算系数,我们可以很容易的得知:

Agilent/Varian公司的640-IR:5S P-P值信噪比=6000,1Min P-P值信噪比=6000*3.5=21000

Shimadzu公司的IRPrestige-21:5S P-P值信噪比=40000/3.5=11000,1Min P-P值信噪比=40000

顺便看一下国产的FTIR

北京瑞利的WQF-510:5S P-P值信噪比=3000/3.5=850,1Min P-P值信噪比=3000(我看到的资料中只是给出了32次扫描的RMS值信噪比为15000:1,前面提过,RMS值信噪比一般是P-P值信噪比的5 倍,所以32次扫描的 P-P值信噪比为3000:1;又因为据我观察,正常扫描情况,WQF-510用4cm-1分辨率扫完4000~400cm-1全谱1次的时间绝对不止 1S,所以我们可以暂时认为其32次扫描时间接近于1Min)

天津港东的FTIR-650:5S P-P值信噪比=15000/3.5=4200,1Min P-P值信噪比=15000(我看到的资料中只写有P-P值信噪比为15000:1,而没有注明时间;写了时间的那份资料里的信噪比数值又让我崩溃且没标明是P-P值。所以姑且认为这里的扫描时间是1Min,大家存疑也就是了。当然,也十分欢迎国产仪器的厂方专家前来指正)

朋友可以到行业内专业的网站进行交流学习!

分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

傅里叶变换红外光谱仪能定量分析吗

主要看你是使用在哪个领域,国家有关于傅里叶红外定量分析的行业标准,目前有部分行业是可以做定量分析,感兴趣的话QQ471821340。

关于傅立叶变换红外光谱仪国标和傅立叶变换红外光谱仪的测试原理的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624