资讯

承天示优,优品至上。

傅立叶变换红外光谱图(傅立叶变换红外光谱图透过率图)

承天示优官方账号 2022-12-12 资讯 877 views 0

又到了我们给大家分享有关傅立叶变换红外光谱图的时候了,同时我们也会对与之对应的傅立叶变换红外光谱图透过率图进行一样的解释哦,希望小伙伴们可以仔细的阅读,如果能对你们正好有所帮助,记得支持一下本站哦。

本文目录一览:

(四)傅立叶变换红外光谱

1.基本原理

红外光谱又称为分子振动转动光谱,是一种分子吸收光谱。当一束具有连续波长的红外光通过物质时,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级。因此,物质分子吸收红外辐射发生振动和转动能级跃迁的波长处就出现红外吸收峰。采用专用仪器记录下透过物质的系列红外光,就是该物质的红外光谱。红外光谱法实质是一种根据物质分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。

傅立叶变换红外光谱法(Fourier transform infrared spectroscopy,简写FTIS)是利用干涉图与红外光谱图之间的对应关系,通过测量干涉图和对干涉图进行傅立叶积分变换的方法来测定和研究红外光谱图的一种方法。

2.样品要求

(1)样品可以是加工成200目的粉末,也可用不加盖片的薄片或光片。

(2)用于以矿物结构、结晶度研究为目的样品最好采用挑选过的单矿物,以尽量减少其他矿物的影响。

3.地质应用

(1)矿物鉴定:利用红外光谱鉴定矿物是红外光谱在地学领域的基本应用。国际矿物及新矿物命名委员会规定红外光谱数据是矿物鉴定的基本数据。矿物红外光谱反映了矿物化学成分、结构特征等信息。从矿物光谱的谱带位置、形状、强度等特征,能判断矿物的类型或是哪一种矿物。如有相应的矿物谱库,则可通过光谱检索来确定矿物。也可参考公开出版的矿物红外光谱图集进行矿物鉴定。

(2)矿物类质同象及同质异象研究:类质同象是指矿物晶体结构中某种质点被其他类似的质点所代替,使晶格常数、物理化学性质发生变化,而结构型式并不改变。矿物类质同象出现一系列结构相同但成分规律变化的系列矿物,反映在红外光谱图中与之相关的吸收谱带发生规律性的位移。

同质异象是指矿物的多形现象,可作为地质作用的温度计和压力计,反映矿物形成环境的差异。成分相同但结构不同,反映在红外光谱上则有很大的差别。

(3)矿物中的水组分研究:红外光谱是研究矿物中水组分的有效手段。矿物中的水主要以分子水H2O、羟基,以及少见的H3O+形式存在,通过3000cm-1以上谱带的信息可以判断矿物结构中水的存在形式。

(4)矿物结构研究:红外光谱主要可用于矿物晶体结构中的有(无)序现象研究,对于探讨矿物形成条件具有重要意义。

(5)矿物结晶程度研究:随着矿物结晶度的降低,晶体内部结构排列变得不规则,对称性降低,反映在红外光谱上的特点是基团振动频率不再是几个固定的值,谱图上的吸收带加宽,谱带数量减少,由此可以判断矿物的结晶度。目前红外光谱法已经被用于石英、磷灰石、高岭石、三水铝石、锆石等矿物的结晶度研究;在研究陨石冲击事件的关键地质科技问题中,有研究者也采用了红外光谱法,利用黑云母和石英的结晶度变化过程表征冲击压力作用的变化。

(6)矿物中包裹体研究:研究矿物中的包裹体有助于了解矿物的形成环境和演化过程。利用红外显微镜附件对单个包裹体进行红外光谱法测试是研究单个包裹体的有效手段之一。另外在石油地质中红外光谱法也被用于有机包裹体研究。通过测得的有机包裹体红外光谱图计算有机质的烷基链碳原子数和正烷烃直链碳原子数,从而能划分油气成藏期和确定油气包裹体的成熟度。

 显微傅里叶变换红外光谱研究

煤的红外吸收光谱常见的有三大类吸收峰,第一类为饱和烃结构吸收峰,包括700~720cm-1、1380cm-1、1460cm-1、2850cm-1、2950cm-1等;第二类为芳烃结构吸收峰,包括:730~900cm-1、1000~1100cm-1、1545~1600cm-1、3030cm-1、3050cm-1等;第三类为含O、S、N等杂环化合物的吸收峰,包括1100~1300cm-1(1290cm-1、1250cm-1、1170cm-1)、1650~1750cm-1、3200~3600cm-1等。对煤来说,其脂肪族结构中多缺乏代表海相源岩特征的长链烷烃-(CH2)n-中的C-C骨架的变形振动吸收峰(700~720cm-1),较多出现的是甲基(CH3)(1380cm-1)、次甲基(CH2)(1460cm-1)的弯曲振动吸收峰和甲基、亚甲基的伸缩振动吸收峰(分别为2850cm-1和2950cm-1);芳烃结构的吸收峰则都可能出现,但以1000~1200cm-1(代表芳环CH面内弯曲振动吸收)、1450cm-1、1600cm-1(代表芳烃中-C=C-基团的伸展振动吸收峰)和3030cm-1、3050cm-1(代表芳核上次亚甲基(CH)的面内伸缩振动吸收峰)比较常见。而含杂原子的吸收峰以3200~3600cm-1(代表酚、醇和羧酸中OH基团、水中的OH基及NH基团的伸缩振动)吸收峰常见,而且比较强。

根据现有研究成果和认识程度,红外吸收光谱在烃源岩研究中的应用见表7-2;研究区石炭—二叠纪煤中不同显微组分的类型参数特征归纳于表7-3。

表7-2 红外吸收光谱在烃源岩研究中的应用综合表

表7-3 研究区不同显微组分红外光谱参数

注:K—孔古4井;X—徐14井;D—大参1井;C—太原组;P—山西组;D—基质镜质体B。

一、角质体

角质体的化学成分是角质和蜡,其中角质是一种生物聚酯,为一种不溶饱和羟基酸聚酯,具有高聚合特征,是植物所产生的最稳定物质,其氢含量可达10%左右。尽管其生烃活化能较高,但其表层的可溶烃类和蜡质却能早期生烃。从角质体的红外吸收光谱图(图7-1)可以看出,其峰型比较简单,在波数1465cm-1、2846cm-1和2925cm-1处有明显而且较强的吸收峰,它们均是脂肪族结构的吸收峰,分别代表烷链结构上的CH3、CH2不对称变形振动(1465cm-1);脂肪族CH2对称伸缩振动(2850cm-1)和脂肪族CH2不对称伸缩振动(2920cm-1);而芳香族结构的吸收峰在谱图中都极其微弱,充分反映了角质体富氢贫氧的特征。在脂肪族结构中,以亚甲基的吸收峰最强,甲基和烷链结构上的CH3、CH2吸收峰也比较尖锐,这说明结构中含有一定的长链脂肪烃。根据峰面积求得的富氢指数ICH2高达64;其脂芳比高达21,按照脂肪族基团中的亚甲基和次甲基以生油为主(秦匡中,1995)的认识,充分说明角质体具有很好的生油能力。

据热模拟研究(金奎励等,1997),角质体中代表脂肪族基团的2950cm-1和2850cm-1吸收峰到260℃(Ro为0.72%)时就达到最大值,到360℃(Ro为1.22%)时仍然很强。从荧光性质变化与温度关系看,在260~290℃时,Q值变化最大,荧光光谱较乱,呈多峰状,到360℃时仍见有极弱的暗褐色荧光。这说明角质体在热演化过程中具有液态窗范围宽的特点。

图7-1 孔古4井山西组煤中角质体FT.IR谱图

二、树脂体

树脂体的主要生源母质是树脂和蜡,树脂主要化学成分是倍半萜、二萜和三萜酸类等树脂酸。树脂酸分子量小,分子结构简单,易于早期生烃(Snowdon,1991),而蜡的主要成分是更加富氢的长直链醇类和脂肪酸类合成的脂类,也是早期生烃的母质之一。因此,树脂体生烃比其他壳质组分都早。从谱图(图7-2)上可以看出,它与角质体的峰型、峰位及强度都具有很好的相似性,即主要由脂肪族结构的1460cm-1、2850cm-1和2920cm-1强吸收峰组成,代表芳核结构的吸收峰除了在代表芳烃中CH面外变形振动(810cm-1)有所显示外,其他峰位都很弱;这从总体上反映了树脂体富氢的特征。但和角质体相比,在代表脂肪族CH2不对称伸缩振动(2920cm-1)及烷链结构上的CH3、CH2不对称变形振动吸收峰(1460cm-1)中有明显的肩峰显示,这说明在脂肪族CH2不对称伸缩振动(2920cm-1)的同时,伴随有脂肪族和脂环核CH伸缩振动(2900cm-1)和脂肪族CH3不对称伸缩振动(2950cm-1),根据对不同有机组分成烃动力学的研究,角质体具有单一的活化能。而树脂体则有一定的分布范围,表示结构上比角质体复杂一些。从参数类型看,各项参数指标值和角质体相比都明显偏低,尤其是富氢指数中的

(2950cm-1/1600cm-1,反映富含次甲基CH2的程度)变得很低。这种现象并不说明树脂体的富氢程度比角质体低,而是由于树脂体具有早期生烃特点造成的。即倾向于以生油为主的亚甲基、次甲基随着树脂体早期生油(实验样品Ro已达0.73%)已大大减少。但即使已进入正常的生油高峰期,树脂体仍然具有丰富的脂链结构,这些都说明树脂体的生油潜力比角质体更大。据热模拟研究,树脂体在镜质组反射率Ro为0.5%时就有渗出沥青体出现,其荧光可持续到290℃(Ro为0.87%),其CH2、CH3伸缩振动吸收峰的最大变化幅度是在230℃(Ro小于0.65%)以前,这些特征都说明树脂体在热演化过程中生烃比角质体早。

图7-2 徐14井太原组煤中树脂体FT.IR谱图

三、孢子体

孢子体主要由性质很稳定的孢粉素组成,它具有羟基、烯属双键和芳香结构特征(Given,1984),其化学组成也含有较多的脂肪族结构,属于富氢显微组分。但由于聚合程度高,其生烃活化能也相对较高,生烃较晚。研究样品中的孢子体以小孢子体为主,偶见的大孢子体在荧光下呈褐色—深褐色,说明已大量失去氢并出现芳构化。但小孢子体个体微小(一般<5μm),受测量微区(测量范围4μm)的限制,测试出的光谱图明显受光通量不足、信噪比低及周围其他组分信息的影响而复杂化。从谱图可以看出(图7-3),总体表现出代表芳烃中芳核的C=C骨架振动吸收峰(1545~1645cm-1)和对称弯曲振动(1350~1420cm-1)的吸收峰突出为特征,且前者峰型尖锐,峰强度较大;后者峰型较宽,强度较低。代表脂肪族结构的吸收峰仅在2900em-1有较弱的显示。虽然谱图因干扰太大而失真,但总的趋势可以看出,孢子体富氢程度远不如角质体和树脂体,相同热演化阶段其芳构化程度比角质体和树脂体高的多。从参数看,其各项指标(

)都比角质体和树脂体低,脂芳比为2.02,这说明作为煤中富氢组分,其生烃性能不如角质体和树脂体。孢子体的化学聚合程度较高,生烃活化能分布范围大,反映其化学组成比较复杂。据热模拟研究(金奎励等1997),孢子体在<290℃(Ro为0.87%)时,脂族基团不断得到加强,>320℃(Ro为1.04%),脂族基团吸收峰强度变小。290~320℃为最大生烃范围。

图7-3 孔古4井太原组煤中孢子体红外吸收光谱图

四、基质镜质体

分别选择孔古4井、大参1、徐14井的太原组和山西组煤中基质镜质体进行对比研究。从光谱图可以看出(图7-4),基质镜质体的红外吸收光谱图中脂肪族结构吸收峰、芳香族结构吸收峰、杂原子结构的吸收峰都有显示。在脂肪族结构中,代表脂肪族CH2不对称伸缩振动(2920cm-1)和CH2对称伸缩振动的吸收峰普遍发育且二峰相联,表明基质镜质体中氢有一定的含量,而且以利于生油的亚甲基和次甲基较发育为特征,具有一定的生烃潜力,从而论证了基质镜质体在本区煤成烃中的意义。芳香族结构中,代表C-O-C伸缩振动(1000~1100cm-1)的吸收峰尖锐、最强且有肩峰,其次是芳烃中芳核的C=C骨架振动吸收峰(1600cm-1)和烷链结构上的CH3、CH2不对称变形振动吸收峰(1460cm-1,区间值为1421~1480cm-1),而1460cm-1吸收峰的出现说明样品中含有一定量的脂族长链结构,这些脂族长链结构的出现证实了基质镜质体中超微类脂体的存在。在杂原子基因中,以含氧原子的3420cm-1吸收峰最明显,但峰型较宽,包容了从3200~3600cm-1的整个区间,因此,它实际上代表了含氧、含硫等杂原子的酚、醇、羧酸和水的(OH)伸缩振动,说明其中杂原子基团类型多而且以含氧杂原子基团为主的特征。

从孔古4井太原组和山西组煤中基质镜质体的红外吸收光谱看,除了峰型宽窄和高低稍有差异外,峰位分布基本相同,但富氢参数和富链参数都表现出太原组煤优于山西组煤的特征。大参1井太原组和山西组基质镜质体的红外吸收光谱在峰位方面没有大的变化,但在峰型和峰强度方面都有明显的差异,尤其是代表脂肪族结构的CH3不对称伸缩振动(2920cm-1)和CH2对称伸缩振动(2850cm-1)的吸收峰,太原组煤的基质镜质体明显比山西组强的多,这充分说明太原组煤的基质镜质体比山西组煤的基质镜质体富氢。从各项参数指标看,脂芳比(1460/1600cm-1),

(2920/1600cm-1)都以孔古4井太原组煤中基质镜质体较好,而徐14井太原组基质镜质体和大参1井山西组煤中基质镜质体相对偏低;从时代看,太原组比山西组煤中基质镜质体的各项参数指标都相对偏高。

图7-4 基质镜质体的Micm-FT-IR谱图

傅里叶红外光谱仪结构示意图及介绍

如图:

傅里叶红外光谱仪主要由光源(硅碳棒、高压汞灯)、迈克耳孙(M6E1驯)干涉仪、检测器、计算机和记录仅组成。核心部分为迈克耳孙干涉仪,它将光源来的信号以干涉图的形式送往计要机进行傅里叶变换的数学处理,最后将干涉图还原成光谱图。

傅立叶红外光谱仪FTIR的具体原理?

傅立叶变换红外光谱仪的核心部件是干涉仪,干涉仪的主要功能是使光源发出的红外光分为两束,一束被定镜反射,一束被动镜反射,动镜的移动使得反射回来的两束光产生了一定的光程差,再使之复合以产生干涉,所得到的干涉图函数包含了光源的全部频率和强度信息。用计算机将干涉图函数进行傅里叶变换,就可以得到以波长或波数为函数的频域图,即红外光谱图。

关于傅立叶变换红外光谱图和傅立叶变换红外光谱图透过率图的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624