资讯

承天示优,优品至上。

傅立叶红外变换倒峰(傅立叶变换后相位数据)

承天示优官方账号 2022-12-12 资讯 1300 views 0

今天的文章给大伙介绍下傅立叶红外变换倒峰,和傅立叶变换后相位数据相关的内容,希望能对小伙伴们有所帮助,记得不要忘记收藏下本站喔。

本文目录一览:

傅里叶红外光谱仪有哪几部分,各自的功能

傅立叶红外光谱仪最核心的部分是 迈克尔逊干涉仪。可以说没有干涉仪就没有傅立叶变换红外光谱。正是因为红外光源经过迈克尔逊干涉仪发生多色光相干,经过样品吸收之后,检测器检测到含有样品信息的红外干涉光的干涉图信号,再经过计算机将干涉图信号经过傅立叶变换,才转换成红外光谱。

其余的部件,如:检测器,光源,光学反射镜,采集卡,计算机等。

光源:用于产生宽带的红外光,样品吸收光源产生的红外光后引起样品分子的振动态跃迁,从而引其透过样品的红外光在相应波长上的透过强度的变化,这也是红外光谱能检测分子振动特征峰的理论来源。

光学反射镜:用于改变红外光的光路

检测器:用于检测透过样品的红外吸收信号,并将光信号转换成电信号传送给计算机的采集卡。

采集卡:用于采集检测器检测到的信号,并将信号存储、处理成光谱。

计算机:用于控制光谱仪的运行,协调迈克尔逊干涉仪,检测器和采集卡的运行、数据采集和处理。

(四)傅立叶变换红外光谱

1.基本原理

红外光谱又称为分子振动转动光谱,是一种分子吸收光谱。当一束具有连续波长的红外光通过物质时,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级。因此,物质分子吸收红外辐射发生振动和转动能级跃迁的波长处就出现红外吸收峰。采用专用仪器记录下透过物质的系列红外光,就是该物质的红外光谱。红外光谱法实质是一种根据物质分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。

傅立叶变换红外光谱法(Fourier transform infrared spectroscopy,简写FTIS)是利用干涉图与红外光谱图之间的对应关系,通过测量干涉图和对干涉图进行傅立叶积分变换的方法来测定和研究红外光谱图的一种方法。

2.样品要求

(1)样品可以是加工成200目的粉末,也可用不加盖片的薄片或光片。

(2)用于以矿物结构、结晶度研究为目的样品最好采用挑选过的单矿物,以尽量减少其他矿物的影响。

3.地质应用

(1)矿物鉴定:利用红外光谱鉴定矿物是红外光谱在地学领域的基本应用。国际矿物及新矿物命名委员会规定红外光谱数据是矿物鉴定的基本数据。矿物红外光谱反映了矿物化学成分、结构特征等信息。从矿物光谱的谱带位置、形状、强度等特征,能判断矿物的类型或是哪一种矿物。如有相应的矿物谱库,则可通过光谱检索来确定矿物。也可参考公开出版的矿物红外光谱图集进行矿物鉴定。

(2)矿物类质同象及同质异象研究:类质同象是指矿物晶体结构中某种质点被其他类似的质点所代替,使晶格常数、物理化学性质发生变化,而结构型式并不改变。矿物类质同象出现一系列结构相同但成分规律变化的系列矿物,反映在红外光谱图中与之相关的吸收谱带发生规律性的位移。

同质异象是指矿物的多形现象,可作为地质作用的温度计和压力计,反映矿物形成环境的差异。成分相同但结构不同,反映在红外光谱上则有很大的差别。

(3)矿物中的水组分研究:红外光谱是研究矿物中水组分的有效手段。矿物中的水主要以分子水H2O、羟基,以及少见的H3O+形式存在,通过3000cm-1以上谱带的信息可以判断矿物结构中水的存在形式。

(4)矿物结构研究:红外光谱主要可用于矿物晶体结构中的有(无)序现象研究,对于探讨矿物形成条件具有重要意义。

(5)矿物结晶程度研究:随着矿物结晶度的降低,晶体内部结构排列变得不规则,对称性降低,反映在红外光谱上的特点是基团振动频率不再是几个固定的值,谱图上的吸收带加宽,谱带数量减少,由此可以判断矿物的结晶度。目前红外光谱法已经被用于石英、磷灰石、高岭石、三水铝石、锆石等矿物的结晶度研究;在研究陨石冲击事件的关键地质科技问题中,有研究者也采用了红外光谱法,利用黑云母和石英的结晶度变化过程表征冲击压力作用的变化。

(6)矿物中包裹体研究:研究矿物中的包裹体有助于了解矿物的形成环境和演化过程。利用红外显微镜附件对单个包裹体进行红外光谱法测试是研究单个包裹体的有效手段之一。另外在石油地质中红外光谱法也被用于有机包裹体研究。通过测得的有机包裹体红外光谱图计算有机质的烷基链碳原子数和正烷烃直链碳原子数,从而能划分油气成藏期和确定油气包裹体的成熟度。

 显微傅里叶变换红外光谱研究

煤的红外吸收光谱常见的有三大类吸收峰,第一类为饱和烃结构吸收峰,包括700~720cm-1、1380cm-1、1460cm-1、2850cm-1、2950cm-1等;第二类为芳烃结构吸收峰,包括:730~900cm-1、1000~1100cm-1、1545~1600cm-1、3030cm-1、3050cm-1等;第三类为含O、S、N等杂环化合物的吸收峰,包括1100~1300cm-1(1290cm-1、1250cm-1、1170cm-1)、1650~1750cm-1、3200~3600cm-1等。对煤来说,其脂肪族结构中多缺乏代表海相源岩特征的长链烷烃-(CH2)n-中的C-C骨架的变形振动吸收峰(700~720cm-1),较多出现的是甲基(CH3)(1380cm-1)、次甲基(CH2)(1460cm-1)的弯曲振动吸收峰和甲基、亚甲基的伸缩振动吸收峰(分别为2850cm-1和2950cm-1);芳烃结构的吸收峰则都可能出现,但以1000~1200cm-1(代表芳环CH面内弯曲振动吸收)、1450cm-1、1600cm-1(代表芳烃中-C=C-基团的伸展振动吸收峰)和3030cm-1、3050cm-1(代表芳核上次亚甲基(CH)的面内伸缩振动吸收峰)比较常见。而含杂原子的吸收峰以3200~3600cm-1(代表酚、醇和羧酸中OH基团、水中的OH基及NH基团的伸缩振动)吸收峰常见,而且比较强。

根据现有研究成果和认识程度,红外吸收光谱在烃源岩研究中的应用见表7-2;研究区石炭—二叠纪煤中不同显微组分的类型参数特征归纳于表7-3。

表7-2 红外吸收光谱在烃源岩研究中的应用综合表

表7-3 研究区不同显微组分红外光谱参数

注:K—孔古4井;X—徐14井;D—大参1井;C—太原组;P—山西组;D—基质镜质体B。

一、角质体

角质体的化学成分是角质和蜡,其中角质是一种生物聚酯,为一种不溶饱和羟基酸聚酯,具有高聚合特征,是植物所产生的最稳定物质,其氢含量可达10%左右。尽管其生烃活化能较高,但其表层的可溶烃类和蜡质却能早期生烃。从角质体的红外吸收光谱图(图7-1)可以看出,其峰型比较简单,在波数1465cm-1、2846cm-1和2925cm-1处有明显而且较强的吸收峰,它们均是脂肪族结构的吸收峰,分别代表烷链结构上的CH3、CH2不对称变形振动(1465cm-1);脂肪族CH2对称伸缩振动(2850cm-1)和脂肪族CH2不对称伸缩振动(2920cm-1);而芳香族结构的吸收峰在谱图中都极其微弱,充分反映了角质体富氢贫氧的特征。在脂肪族结构中,以亚甲基的吸收峰最强,甲基和烷链结构上的CH3、CH2吸收峰也比较尖锐,这说明结构中含有一定的长链脂肪烃。根据峰面积求得的富氢指数ICH2高达64;其脂芳比高达21,按照脂肪族基团中的亚甲基和次甲基以生油为主(秦匡中,1995)的认识,充分说明角质体具有很好的生油能力。

据热模拟研究(金奎励等,1997),角质体中代表脂肪族基团的2950cm-1和2850cm-1吸收峰到260℃(Ro为0.72%)时就达到最大值,到360℃(Ro为1.22%)时仍然很强。从荧光性质变化与温度关系看,在260~290℃时,Q值变化最大,荧光光谱较乱,呈多峰状,到360℃时仍见有极弱的暗褐色荧光。这说明角质体在热演化过程中具有液态窗范围宽的特点。

图7-1 孔古4井山西组煤中角质体FT.IR谱图

二、树脂体

树脂体的主要生源母质是树脂和蜡,树脂主要化学成分是倍半萜、二萜和三萜酸类等树脂酸。树脂酸分子量小,分子结构简单,易于早期生烃(Snowdon,1991),而蜡的主要成分是更加富氢的长直链醇类和脂肪酸类合成的脂类,也是早期生烃的母质之一。因此,树脂体生烃比其他壳质组分都早。从谱图(图7-2)上可以看出,它与角质体的峰型、峰位及强度都具有很好的相似性,即主要由脂肪族结构的1460cm-1、2850cm-1和2920cm-1强吸收峰组成,代表芳核结构的吸收峰除了在代表芳烃中CH面外变形振动(810cm-1)有所显示外,其他峰位都很弱;这从总体上反映了树脂体富氢的特征。但和角质体相比,在代表脂肪族CH2不对称伸缩振动(2920cm-1)及烷链结构上的CH3、CH2不对称变形振动吸收峰(1460cm-1)中有明显的肩峰显示,这说明在脂肪族CH2不对称伸缩振动(2920cm-1)的同时,伴随有脂肪族和脂环核CH伸缩振动(2900cm-1)和脂肪族CH3不对称伸缩振动(2950cm-1),根据对不同有机组分成烃动力学的研究,角质体具有单一的活化能。而树脂体则有一定的分布范围,表示结构上比角质体复杂一些。从参数类型看,各项参数指标值和角质体相比都明显偏低,尤其是富氢指数中的

(2950cm-1/1600cm-1,反映富含次甲基CH2的程度)变得很低。这种现象并不说明树脂体的富氢程度比角质体低,而是由于树脂体具有早期生烃特点造成的。即倾向于以生油为主的亚甲基、次甲基随着树脂体早期生油(实验样品Ro已达0.73%)已大大减少。但即使已进入正常的生油高峰期,树脂体仍然具有丰富的脂链结构,这些都说明树脂体的生油潜力比角质体更大。据热模拟研究,树脂体在镜质组反射率Ro为0.5%时就有渗出沥青体出现,其荧光可持续到290℃(Ro为0.87%),其CH2、CH3伸缩振动吸收峰的最大变化幅度是在230℃(Ro小于0.65%)以前,这些特征都说明树脂体在热演化过程中生烃比角质体早。

图7-2 徐14井太原组煤中树脂体FT.IR谱图

三、孢子体

孢子体主要由性质很稳定的孢粉素组成,它具有羟基、烯属双键和芳香结构特征(Given,1984),其化学组成也含有较多的脂肪族结构,属于富氢显微组分。但由于聚合程度高,其生烃活化能也相对较高,生烃较晚。研究样品中的孢子体以小孢子体为主,偶见的大孢子体在荧光下呈褐色—深褐色,说明已大量失去氢并出现芳构化。但小孢子体个体微小(一般<5μm),受测量微区(测量范围4μm)的限制,测试出的光谱图明显受光通量不足、信噪比低及周围其他组分信息的影响而复杂化。从谱图可以看出(图7-3),总体表现出代表芳烃中芳核的C=C骨架振动吸收峰(1545~1645cm-1)和对称弯曲振动(1350~1420cm-1)的吸收峰突出为特征,且前者峰型尖锐,峰强度较大;后者峰型较宽,强度较低。代表脂肪族结构的吸收峰仅在2900em-1有较弱的显示。虽然谱图因干扰太大而失真,但总的趋势可以看出,孢子体富氢程度远不如角质体和树脂体,相同热演化阶段其芳构化程度比角质体和树脂体高的多。从参数看,其各项指标(

)都比角质体和树脂体低,脂芳比为2.02,这说明作为煤中富氢组分,其生烃性能不如角质体和树脂体。孢子体的化学聚合程度较高,生烃活化能分布范围大,反映其化学组成比较复杂。据热模拟研究(金奎励等1997),孢子体在<290℃(Ro为0.87%)时,脂族基团不断得到加强,>320℃(Ro为1.04%),脂族基团吸收峰强度变小。290~320℃为最大生烃范围。

图7-3 孔古4井太原组煤中孢子体红外吸收光谱图

四、基质镜质体

分别选择孔古4井、大参1、徐14井的太原组和山西组煤中基质镜质体进行对比研究。从光谱图可以看出(图7-4),基质镜质体的红外吸收光谱图中脂肪族结构吸收峰、芳香族结构吸收峰、杂原子结构的吸收峰都有显示。在脂肪族结构中,代表脂肪族CH2不对称伸缩振动(2920cm-1)和CH2对称伸缩振动的吸收峰普遍发育且二峰相联,表明基质镜质体中氢有一定的含量,而且以利于生油的亚甲基和次甲基较发育为特征,具有一定的生烃潜力,从而论证了基质镜质体在本区煤成烃中的意义。芳香族结构中,代表C-O-C伸缩振动(1000~1100cm-1)的吸收峰尖锐、最强且有肩峰,其次是芳烃中芳核的C=C骨架振动吸收峰(1600cm-1)和烷链结构上的CH3、CH2不对称变形振动吸收峰(1460cm-1,区间值为1421~1480cm-1),而1460cm-1吸收峰的出现说明样品中含有一定量的脂族长链结构,这些脂族长链结构的出现证实了基质镜质体中超微类脂体的存在。在杂原子基因中,以含氧原子的3420cm-1吸收峰最明显,但峰型较宽,包容了从3200~3600cm-1的整个区间,因此,它实际上代表了含氧、含硫等杂原子的酚、醇、羧酸和水的(OH)伸缩振动,说明其中杂原子基团类型多而且以含氧杂原子基团为主的特征。

从孔古4井太原组和山西组煤中基质镜质体的红外吸收光谱看,除了峰型宽窄和高低稍有差异外,峰位分布基本相同,但富氢参数和富链参数都表现出太原组煤优于山西组煤的特征。大参1井太原组和山西组基质镜质体的红外吸收光谱在峰位方面没有大的变化,但在峰型和峰强度方面都有明显的差异,尤其是代表脂肪族结构的CH3不对称伸缩振动(2920cm-1)和CH2对称伸缩振动(2850cm-1)的吸收峰,太原组煤的基质镜质体明显比山西组强的多,这充分说明太原组煤的基质镜质体比山西组煤的基质镜质体富氢。从各项参数指标看,脂芳比(1460/1600cm-1),

(2920/1600cm-1)都以孔古4井太原组煤中基质镜质体较好,而徐14井太原组基质镜质体和大参1井山西组煤中基质镜质体相对偏低;从时代看,太原组比山西组煤中基质镜质体的各项参数指标都相对偏高。

图7-4 基质镜质体的Micm-FT-IR谱图

红外光谱 特征峰的强弱怎么看?透过率值越大越强,还是越小越强

傅里叶变换红外光谱仪简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。

说明傅里叶红外光谱仪与色散型红外光谱仪的区别

红外光谱[1](infrared spectra),以波长或波数为横坐标以强度或其他随波长变化的性质为纵坐标所得到的反映红外射线与物质相互作用的谱图。按红外射线的波长范围,可粗略地分为近红外光谱(波段为0.8~2.5微米)、中红外光谱(2.5~25微米)和远红外光谱(25~1000微米)。对物质自发发射或受激发射的红外射线进行分光,可得到红外发射光谱,物质的红外发射光谱主要决定于物质的温度和化学组成;对被物质所吸收的红外射线进行分光,可得到红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,它是一种分子光谱。分子的红外吸收光谱属于带状光谱。原子也有红外发射和吸收光谱,但都是线状光谱。

量子场论或量子电动力学可以正确地描述和解释红外射线(一种电磁辐射)与物质的相互作用。若采用半经典的理论处理方法,即对组成物质的分子和原子作为量子力学体系来处理,辐射场作为一种经典物理中的电磁波并忽略其光子的特征,则分子红外光谱是由分子不停地作振动和转动而产生的。分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动模式。当孤立分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动。含N个原子的分子应有3N-6个简正振动方式;如果是线性分子,只有3N-5个简正振动方式。图中示出非线性3原子分子仅有的3种简正振动模式。分子的转动指的是分子绕质心进行的运动。分子振动和转动的能量不是连续的,而是量子化的。当分子由一种振动(或转动)状态跃迁至另一种振动(或转动)状态时,就要吸收或发射与其能级差相应的光。

研究红外光谱的方法主要是吸收光谱法。使用的光谱有两种类型。一种是单通道或多通道测量的棱镜或光栅色散型光谱仪,另一种是利用双光束干涉原理并进行干涉图的傅里叶变换数学处理的非色散型的傅里叶变换红外光谱仪。

红外光谱具有高度的特征性,不但可以用来研究分子的结构和化学键,如力常数的测定等,而且广泛地用于表征和鉴别各种化学物种。

红外识谱歌

红外可分远中近,中红特征指纹区,

1300来分界,注意横轴划分异。

看图要知红外仪,弄清物态液固气。

样品来源制样法,物化性能多联系。

识图先学饱和烃,三千以下看峰形。

2960、2870是甲基,2930、2850亚甲峰。

1470碳氢弯,1380甲基显。

二个甲基同一碳,1380分二半。

面内摇摆720,长链亚甲亦可辨。

烯氢伸展过三千,排除倍频和卤烷。

末端烯烃此峰强,只有一氢不明显。

化合物,又键偏,~1650会出现。

烯氢面外易变形,1000以下有强峰。

910端基氢,再有一氢990。

顺式二氢690,反式移至970;

单氢出峰820,干扰顺式难确定。

炔氢伸展三千三,峰强很大峰形尖。

三键伸展二千二,炔氢摇摆六百八。

芳烃呼吸很特征,1600~1430。

1650~2000,取代方式区分明。

900~650,面外弯曲定芳氢。

五氢吸收有两峰,700和750;

四氢只有750,二氢相邻830;

间二取代出三峰,700、780,880处孤立氢

醇酚羟基易缔合,三千三处有强峰。

C-O伸展吸收大,伯仲叔醇位不同。

1050伯醇显,1100乃是仲,

1150叔醇在,1230才是酚。

1110醚链伸,注意排除酯酸醇。

若与π键紧相连,二个吸收要看准,

1050对称峰,1250反对称。

苯环若有甲氧基,碳氢伸展2820。

次甲基二氧连苯环,930处有强峰,

环氧乙烷有三峰,1260环振动,

九百上下反对称,八百左右最特征。

缩醛酮,特殊醚,1110非缩酮。

酸酐也有C-O键,开链环酐有区别,

开链强宽一千一,环酐移至1250。

羰基伸展一千七,2720定醛基。

吸电效应波数高,共轭则向低频移。

张力促使振动快,环外双键可类比。

二千五到三千三,羧酸氢键峰形宽,

920,钝峰显,羧基可定二聚酸、

酸酐千八来偶合,双峰60严相隔,

链状酸酐高频强,环状酸酐高频弱。

羧酸盐,偶合生,羰基伸缩出双峰,

1600反对称,1400对称峰。

1740酯羰基,何酸可看碳氧展。

1180甲酸酯,1190是丙酸,

1220乙酸酯,1250芳香酸。

1600兔耳峰,常为邻苯二甲酸。

氮氢伸展三千四,每氢一峰很分明。

羰基伸展酰胺I,1660有强峰;

N-H变形酰胺II,1600分伯仲。

伯胺频高易重叠,仲酰固态1550;

碳氮伸展酰胺III,1400强峰显。

胺尖常有干扰见,N-H伸展三千三,

叔胺无峰仲胺单,伯胺双峰小而尖。

1600碳氢弯,芳香仲胺千五偏。

八百左右面内摇,确定最好变成盐。

伸展弯曲互靠近,伯胺盐三千强峰宽,

仲胺盐、叔胺盐,2700上下可分辨,

亚胺盐,更可怜,2000左右才可见。

硝基伸缩吸收大,相连基团可弄清。

1350、1500,分为对称反对称。

氨基酸,成内盐,3100~2100峰形宽。

1600、1400酸根展,1630、1510碳氢弯。

盐酸盐,羧基显,钠盐蛋白三千三。

矿物组成杂而乱,振动光谱远红端。

钝盐类,较简单,吸收峰,少而宽。

注意羟基水和铵,先记几种普通盐。

1100是硫酸根,1380硝酸盐,

1450碳酸根,一千左右看磷酸。

硅酸盐,一峰宽,1000真壮观。

勤学苦练多实践,红外识谱不算难。

红外光谱发展史

雨后天空出现的彩虹,是人类经常观测到的自然光谱。而真正意义上对光谱的研究是从英国科学家牛顿(Newton) 开始的。1666 年牛顿证明一束白光可分为一系列不同颜色的可见光,而这一系列的光投影到一个屏幕上出现了一条从紫色到红色的光带。牛顿导入“光谱”(spectrum)一词来描述这一现象。牛顿的研究是光谱科学开端的标志。

从牛顿之后人类对光的认识逐渐从可见光区扩展到红外和紫外区。1800 年英国科学家W. Herschel 将来自太阳的辐射构成一副与牛顿大致相同的光谱,然后将一支温度计通过不同颜色的光,并且用另外一支不在光谱中的温度计作为参考。他发现当温度计从光谱的紫色末端向红色末端移动时,温度计的读数逐渐上升。特别令人吃惊的是当温度计移动到红色末端之外的区域时,温度计上的读数达到最高。这个试验的结果有两重含义,首先是可见光区域红色末端之外还有看不见的其他辐射区域存在,其次是这种辐射能够产生热。由于这种射线存在的区域在可见光区末端以外而被称为红外线。(1801 年德国科学家J.W. Ritter 考察太阳光谱的另外一端,即紫色端时发现超出紫色端的区域内有某种能量存在并且能使AgCl 产生化学反应,该试验导致了紫外线的发现。

1881年Abney 和Festing 第一次将红外线用于分子结构的研究。他们Hilger光谱仪拍下了46个有机液体的从0.7到1.2微米区域的红外吸收光谱。由于这种仪器检测器的限制,所能够记录下的光谱波长范围十分有限。随后的重大突破是测辐射热仪的发明。1880年天文学家Langley在研究太阳和其他星球发出的热辐射时发明一种检测装置。该装置由一根细导线和一个线圈相连,当热辐射抵达导线时能够引起导线电阻非常微小的变化。而这种变化的大小与抵达辐射的大小成正比。这就是测辐射热仪的核心部分。用该仪器突破了照相的限制,能够在更宽的波长范围检测分子的红外光谱。采用NaCl作棱镜和测辐射热仪作检测器,瑞典科学家Angstrem第一次记录了分子的基本振动(从基态到第一激发态)频率。1889年Angstrem首次证实尽管CO和CO2都是由碳原子和氧原子组成,但因为是不同的气体分子而具有不同的红外光谱图。这个试验最根本的意义在于它表明了红外吸收产生的根源是分子而不是原子。而整个分子光谱学科就是建立在这个基础上的。不久Julius发表了20个有机液体的红外光谱图,并且将在3000cm-1的吸收带指认为甲基的特征吸收峰。这是科学家们第一次将分子的结构特征和光谱吸收峰的位置直接联系起来。图1是液体水和重水部分红外光谱图,主要为近红外部分。图中可观察到水分子在739和970nm处有吸收峰存在,这些峰都处在可见光区红色一端之外。由于氢键作用,液体水的红外光谱图比气态水的谱图要复杂得多。

红外光谱仪的研制可追溯的20 世纪初期。1908 年Coblentz 制备和应用了用氯化钠晶体为棱镜的红外光谱议;1910 年Wood 和Trowbridge6 研制了小阶梯光栅红外光谱议;1918 年Sleator 和Randall 研制出高分辨仪器。20 世纪40 年代开始研究双光束红外光谱议。1950 年由美国PE 公司开始商业化生产名为Perkin-Elmer 21 的双光束红外光谱议。与单光束光谱仪相比,双光束红外光谱议不需要由经过专门训练的光谱学家进行操作,能够很快的得到光谱图。因此Perkin-Elmer 21 很快在美国畅销。Perkin-Elmer 21 的问世大大的促进了红外光谱仪的普及。

现代红外光谱议是以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。傅立叶红外光谱仪的产生是一次革命性的飞跃。与传统的仪器相比,傅立叶红外光谱仪具有快速、高信噪比和高分辨率等特点。更重要的是傅立叶变换催生了许多新技术,例如步进扫描、时间分辨和红外成像等。这些新技术大大的拓宽了红外的应用领域,使得红外技术的发展产生了质的飞跃。如果采用分光的办法,这些技术是不可能实现的。这些技术的产生,大大的拓宽了红外技术的应用领域。 是用红外成像技术得到的地球表面温度分布和地球大气层中水蒸气含量图。没有傅立叶变换技术,不可能得到这样的图像。图1.2 Perkin-Elmer 21 双光束红外光谱议。该仪器是由美国Perkin-Elmer 公司1950 开始制造,是最早期商业化生产的双光束红外光谱议。

红外光谱的理论解释是建立在量子力学和群论的基础上的。1900 年普朗克在研究黑体辐射问题时,给出了著名的Plank 常数h, 表示能量的不连续性。量子力学从此走上历史舞台。1911 年W Nernst 指出分子振动和转动的运动形态的不连续性是量子理论的必然结果。1912 年丹麦物理化学家Niels Bjerrum 提出HCl 分子的振动是带负电的Cl 原子核带正电的H 原子之间的相对位移。分子的能量由平动、转动和振动组成,并且转动能量量子化的理论,该理论被称为旧量子理论或者半经典量子理论。后来矩阵、群论等数学和物理方法被应用于分子光谱理论。随着现代科学的不断发展,分子光谱的理论也在不断的发展和完善。分子光谱理论和应用的研究还在发展之中。多维分子光谱的理论和应用就是研究方向之一。

傅里叶红外峰位置轻微偏移

说明了检测到官能团或者不对称的甲基,具体是哪个位置的,哪个官能团变化,要参考变化的吸收峰对应的是哪个结构(例如甲基和亚甲基有不同的吸收峰位置);同时对比前后变化的趋势,也可以分析该结构是如何变化的(取代,还是键长增加,还是转动)。红外吸收峰的位置(频率)取决于键能,同一个键键能改变通常告诉你键长的改变。如果你是用的粉末样品,实验过程中的制备因素也会影响到峰的位置和强弱,当然这些影响不会很大,所以可能会发生轻微峰值偏移。

今天的傅立叶红外变换倒峰有关的说明就先聊到这里啦,想指导更多有关于傅立叶变换后相位数据的东西,可以移步到官网去查看哦,会有更多的惊喜等着你哦。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624