资讯

承天示优,优品至上。

拉曼光谱傅立叶变换红外(傅立叶变换拉曼光谱仪原理)

承天示优官方账号 2022-12-15 资讯 910 views 0

又到了我们给大家分享有关拉曼光谱傅立叶变换红外的时候了,同时我们也会对与之对应的傅立叶变换拉曼光谱仪原理进行一样的解释哦,希望小伙伴们可以仔细的阅读,如果能对你们正好有所帮助,记得支持一下本站哦。

本文目录一览:

红外光谱仪测试样品准备要求是什么?

红外光谱(Infrared spectrometry)和拉曼光谱(Raman spectrometry)是研究分子结构和化学组成的有力工具,由于其快速、高灵敏度、检测用量少等优点,在材料、化工、环保、地质等领域广泛应用。从分析测试角度来看,两者配合使用往往能够更好提供分子结构方面的信息。红外光谱与拉曼光谱同属于分子振动光谱,但两者实际上存在较大区别:红外光谱是吸收光谱,拉曼光谱是散射光谱,而且,同一分子的两种光谱往往不同,这与分子对称性紧密相关,也受分子振动规律严格限制。刚接触的话,如果不能从机理到应用层面对二者有较为清晰的了解和认知,单从那条曲折的谱线或许并不能甄别其关联与区别。接下来,通过理论结合实例的方式为大家掀开两种光谱的“面纱”,以期为读者提供参考。

二、基本介绍

(一)检测原理

(1)红外光谱:当电磁辐射与物质分子相互作用时,其能量与分子的振动或转动能量差相当时,引起分子由低能级向高能级发生跃迁,结果使某些特定波长的电磁辐射被物质分子所吸收,测量在不同波长处的辐射强度就得到了红外吸收光谱分子吸收红外辐射后发生振动能级和转动能级的跃迁,因而红外光谱又称为分子振动转动光谱。(简言之,红外光谱产生是由于吸收光的能量,引起分子中偶极矩改变的振动)。

(2)拉曼光谱:光照射到物质,使光子与分子内的电子碰撞,若发生的是非弹性碰撞时,光子就有一部分能量传递给电子,此时散射光的频率就不等于入射光的频率,这种散射被称为拉曼散射,所产生的光谱被称为拉曼光谱。(简言之,拉曼光谱的产生是由于单色光照射后产生光的综合散射效应,引起分子中极化率改变的振动)。

(二)活性判别

(1)互斥规则

凡具有对称中心的分子,若其分子振动是拉曼活性的,则其红外吸收是非活性的。反之,若为红外活性的,则拉曼为非活性的。

(2)互允规则

没有对称中心的分子,其拉曼和红外光谱都是活性的(个别除外)。

(3)互禁规则

对于少数分子的振动,其拉曼和红外都是非活性的(如乙烯分子)。

(三)检测仪器

1)红外光谱

(1)色散型红外光谱仪:与紫外-可见光分光光度计类似,是由光源、单色器、吸收池、检测器和记录系统等部分组成。以棱镜或光栅作为色散元件,由于采用狭缝,使这类色散型仪器能量受严格限制,扫描时间长,灵敏度、分辨率和准确度较低。

(2)傅里叶变换红外光谱仪:没有色散元件,主要由光源、迈克尔逊干涉仪、探测器、计算机等组成。相比色散型红外光谱仪,具有分辨率高,波数精度高,扫描速率快,光谱范围宽,灵敏度高等优点。

2)拉曼光谱

(1)色散型激光拉曼光谱仪:主要由试样室、激光器、单色器、检测器等组成。

(2)傅里叶变换近红外激光拉曼光谱仪:主要由试样室、激光光源、迈克尔逊干涉仪、滤光片组、检测器等组成。

(3)激光显微拉曼光谱仪:使入射激光通过显微镜聚焦到试样的微小部位,采用摄像管、监视器等装置直接观察放大图像,以便把激光点对准不受周围物质干扰情况下的微区,可精确获取所照射部位的拉曼光谱图。

(四)异同点

1)相同点:对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。因此,对某一给定的化合物,某些峰的红外吸收波数和拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。拉曼光谱和红外光谱一样,也是用来检测物质分子的振动和转动能级。

2)不同点

(1)本质区别:红外光谱是吸收光谱,拉曼光谱是散射光谱。

(2)红外更易测定,且信号较强,但拉曼信号较弱。不过,拉曼光谱一般更清晰,重叠带很少见到,谱图解析更方便。

(3)红外光谱使用红外光(尤其中红外光),而拉曼可选择可见光到近红外光。

(4)红外光谱常用于研究极性基团的非对称振动,拉曼光谱常用于研究非极性基团与骨架的对称振动。

(5)拉曼光谱可测水溶液(水的拉曼散射很弱),而红外光谱不适用于水溶液测定。

(6)拉曼光谱测定无需特殊制样处理,而红外光谱测定需要制样。

(7)拉曼光谱可以在玻璃容器或毛细管中测量,但红外光谱不可在玻璃容器中测量。

(8)拉曼光谱和红外光谱多数时候相互补充,即:红外强,拉曼弱。红外弱,拉曼强。

(9)红外光谱鉴定有机物更优,而拉曼光谱在提高无机化合物信息时更全面。

(10)红外光谱解析:三要素(吸收频率、强度、峰形)。拉曼光谱解析除了有三要素外,还有去偏振度。

拉曼光谱法与红外光谱法相比较

激光拉曼光谱法

开放分类: 化学、科学、电化学

激光拉曼光谱法

拼音:jiguanglamanguangpufa

英文名称:laser Raman spectrometry

说明:应用激光光源的拉曼光谱法。应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱。其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高。已应用于生物、药物及环境分析中痕量物质的检测。共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测。已用于无机、有机、生物大分子、离子乃至活体组成的测定和研究。激光拉曼光谱与傅里叶变换红外光谱相配合,已成为分子结构研究的主要手段。

红外光谱法

开放分类: 化学

红外光谱法又称“红外分光光度分析法”。分子吸收光谱的一种。利用物质对红外光区的电磁辐射的选择性吸收来进行结构分析及定性和定量分析的力一法。被测物质的分子在红外线照射下,只吸收与其分子振动、转动频率相一致的红外光谱。对红外光谱进行剖析,可对物质进行定性分析。化合物分子中存在着许多原子团,各原子团被激发后,都会产生特征振动,其振动频率也必然反映在红外吸收光谱上。据此可鉴定化合物中各种原子团,也可进行定量分析。

中傅里叶变换红外光谱和拉曼光谱分析仪一样吗

傅里叶变换红外光谱:

我们得到的谱图是由原始的干涉信号经过傅里叶变换后的图。

拉曼光谱:

拉曼光谱和红外光谱分别是由拉曼光谱仪和红外光谱光谱仪检测得到的,这两种仪器的工作原理不同。

拉曼光谱和红外光谱分都可以提供分子的结构信息。

1.傅里叶变换红外(FT-IR)通过迈克尔逊干涉仪将物质的吸收光谱信号转换成时间域信号,在通过.傅里叶数学变换转换成我们通常熟悉的谱图信号.拉曼光谱是测量漫反射信号.这是他们仪器原理上的区别.

2.在IR中,物质的偶极距必须发生变化,才能产生信号,而在拉曼中,必须极化率发生变化.

3.两者是互补的,有些分子结构较对称的(比如二氧化碳是非极性分子,在IR中无信号或很弱)但在拉曼中由于其电子云密度大,很易极化,极化率大有很强的信号.这就互补了,他们测的都是分子骨架的振动-转动信息.

拉曼光谱仪主要构造

1. 激光拉曼光谱原理

当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利(Rayleigh)散射;还有一种散射光,它约占总散射光强度的 10^-6~10^-10,该散射光不仅传播方向发生了改变,而且该散射光的频率也发生了改变,从而不同于激发光(入射光)的频率,因此称该散射光为拉曼(Raman)散射。在拉曼散射中,散射光频率相对入射光频率减少的,称之为斯托克斯散射,因此相反的情况,频率增加的散射,称为反斯托克斯散射,斯托克斯散射通常要比反斯托克斯散射强得多,拉曼光谱仪通常大多测定的是斯托克斯散射,也统称为拉曼散射。

斯托克斯线(Stokes):基态分子跃迁到虚能级后不会到原处基态,而落到另一较高能级发射光子,发射的新光子能量hv'显然小于入射光子能量hv,△V 就是拉曼散射光谱的频率位移。反斯托克斯线(anti-Stokes):发射光子频率高于原入射光子频率。

拉曼位移(Raman shift):△V 即散射光频率与激发光频之差。拉曼位移与入射光频率无关,它只与散射分子本身的结构有关。拉曼散射是由于分子极化率的改变而产生的(电子云发生变化)。拉曼位移取决于分子振动能级的变化,不同化学键或基团有特征的分子振动,ΔE反映了指定能级的变化,因此与之对应的拉曼位移也是特征的。这是拉曼光谱可以作为分子结构定性分析的依据。

2、拉曼光谱仪分类及结构

拉曼光谱仪一般由光源、外光路、色散系统、及信息处理与显示系统五部分组成。

①激发光源:常用的有Ar离子激光器,Kr离子激光器,He-Ne激光器,Nd-YAG激光器,二极管激光器等。

②样品装置:样品放置方式,包括直接的光学界面,显微镜,光纤维探针和样品。

③滤光器:激光波长的散射光(瑞利光)要比拉曼信号强几个数量级,必须在进入检测器前滤除,另外,为防止样品不被外辐射源照射,需要设置适宜的滤波器或者物理屏障。

④单色器和迈克尔逊干涉仪:有单光栅、双光栅或三光栅,一般使用平面全息光栅干涉器一般与FTIR上使用的相同,为多层镀硅的CaF2或镀Fe2O3的CaF2分束器。也有用石英分束器及扩展范围的KBr分束器。

⑤检测器:传统的采用光电倍增管,目前多采用CCD探测器,FTRaman常用的检测器为Ge或InGaAs检测器。

拉曼光谱仪又细分为激光拉曼光谱仪(laser Raman spectroscopy)和傅立叶变换-拉曼光谱仪(FT-Ramanspectroscopy)。其结构组成及特点如下:

(1)激光拉曼光谱仪(laser Raman spectroscopy)

激光光源:He-Ne激光器,波长632.8nm;Ar激光器,波长514.5 nm,488.0nm;散射强度∝1/λ; 单色器: 光栅,多单色器; 检测器: 光电倍增管, 光子计数器。

激光拉曼光谱因与红外光谱有着相同的波长范围且操作相对简单,因此备受重视。所具有的优点如下:光源频率可调、分辨性好,分辨率高、谱峰常为尖峰,样品用量少(常规用量2~2.5 ug,微量操作时用量为0.06 ug)、只有少量的倍频及组频、样品测试范围广涵盖水溶液样品。激光拉曼光谱仪中的激光易激发出荧光,从而影响测定结果。为了避免弊端,研制了新型的傅里叶变换近红外激光拉曼光谱仪和共焦激光光谱仪。

(2)傅立叶变换-拉曼光谱仪(FT-Ramanspectroscopy)

光源:Nd-YAG钇铝石榴石激光器(1.064μm);检测器:高灵敏度的铟镓砷探头。激光光源、试样室、迈克尔逊干涉仪、特殊滤光器、检测器组成。

优点:避免了荧光干扰;精度高;消除了瑞利谱线;测试速度快。

傅里叶红外光谱仪与拉曼光谱仪的区别有哪些

红外光谱与拉曼光谱的比较

相同点

对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。因此,对某一给定的化合物,某些峰的红外吸收波数与拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。

不同点

(1)红外光谱的入射光及检测光均是红外光,而拉曼光谱的入射光大多数是可见光 ,散射光也是可见光;

(2)红外谱测定的是光的吸收,横坐标用波数或波长表示,而拉曼光谱测定的是光的散射,横坐标是拉曼位移;

(3)两者的产生机理不同。红外吸收是由于振动引起分子偶极矩或电荷分布变化产生的。拉曼散射是由于键上电子云分布产生瞬间变形引起暂时极化,是极化率的改变,产生诱导偶极,当返回基态时发生的散射。散射的同时电子云也恢复原态;

(4)红外光谱用能斯特灯、碳化硅棒或白炽线圈作光源而拉曼光谱仪用激光作光源;

(5)用拉曼光谱分析时,样品不需前处理。而用红外光谱分析样品时,样品要经过前处理,液体样品常用液膜法和液体样品常用液膜法,固体样品可用调糊法,高分子化合物常用薄膜法,体样品的测定可使用窗板间隔为2.5-10 cm的大容量气体池;

(6)红外光谱主要反映分子的官能团,而拉曼光谱主要反映分子的骨架主要用于分析生物大分子;

(7)拉曼光谱和红外光谱可以互相补充,对于具有对称中心的分子来说,具有一互斥规则:与对称中心有对称关系的振动,红外不可见,拉曼可见;与对称中心无对称关系的振动,红外可见,拉曼不可见。

以上引用自中国化工仪器网

拉曼默认测的三个点是?

拉曼光谱(Raman spectra),是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。

拉曼散射光谱具有以下明显的特征

a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;

b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。

c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。

拉曼光谱技术的优越性

提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。

1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。

2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器。

3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。

4 因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。

5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。

定性鉴别

拉曼光谱可提供任何分子中官能基团的结构信息。因此可用来鉴别试验和结构解析。多晶现象可以参照红外的处理。 

 

   定量测定

拉曼谱带的强度与待测物浓度的关系遵守比尔定律:IV=KLCI0其中IV是给定波长处的峰强,K代表仪器和样品的参数,L是光路长度,C是样品中特定组分的摩尔浓度,I0是激光强度。实际工作中,光路长度被更准确的描述为样品体积,这是一种描述激光聚焦和采集光学的仪器变量。上述等式是拉曼定量应用的基础。

拉曼光谱的原理

1、瑞利散射与拉曼散射

当一束激发光的光子与作为散射中心的分子发生相互作用时,大部分光子仅是改变了方向,发生散射,而光的频率仍与激发光源一致,这种散射称为瑞利散射。但也存在很微量的光子不仅改变了光的传播方向,而且也改变了光波的频率,这种散射称为拉曼散射。其散射光的强度约占总散射光强度的10-6~10-10。拉曼散射的产生原因是光子与分子之间发生了能量交换改变了光子的能量。

2、拉曼散射的产生

光子和样品分子之间的作用可以从能级之间的跃迁来分析。样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。这样,样品分子吸收光子后到达一种准激发状态,又称为虚能态。样品分子在准激发态时是不稳定的,它将回到电子能级的基态。若分子回到电子能级基态中的振动能级基态,则光子的能量未发生改变,发生瑞利散射。如果样品分子回到电子能级基态中的较高振动能级即某些振动激发态,则散射的光子能量小于入射光子的能量,其波长大于入射光。这时散射光谱的瑞利散射谱线较低频率侧将出现一根拉曼散射光的谱线,称为Stokes线。如果样品分子在与入射光子作用前的瞬间不是处于电子能级基态的zui低振动能级,而是处于电子能级基态中的某个振动能级激发态,则入射光光子作用使之跃迁到准激发态后,该分子退激回到电子能级基态的振动能级基态,这样散射光能量大于入射光子能量,其谱线位于瑞利谱线的高频侧,称为antiStokes线。Stokes线和anti-Stokes线位于瑞利谱线两侧,间距相等。Stokes线和anti-Stokes线统称为拉曼谱线。由于振动能级间距还是比较大的,因此,根据波尔兹曼定律,在室温下,分子绝大多数处于振动能级基态,所以Stokes线的强度远远强于anti-Stokes线。拉曼光谱仪一般记录的都只是Stokes线。

3、拉曼位移(RamanShift)

斯托克斯与反斯托克斯散射光的频率与激发光源频率之差Δν统称为拉曼位移(RamanShift)。斯托克斯散射的强度通常要比反斯托克斯散射强度强得多,在拉曼光谱分析中,通常测定斯托克斯散射光线。拉曼位移取决于分子振动能级的变化,不同的化学键或基态有不同的振动方式,决定了其能级间的能量变化,因此,与之对应的拉曼位移是特征的。这是拉曼光谱进行分子结构定性分析的理论依据。

4、拉曼谱参数

拉曼谱的参数主要是谱峰的位置和强度。峰位是样品分子电子能级基态的振动态性质的一种反映,它是用入射光与散射光的波数差来表示的。峰位的移动与激发光的频率无关。拉曼散射强度与产生谱线的特定物质的浓度有关,成正比例关系。而在红外谱中,谱的强度与样品浓度成指数关系。)样品分子量也与拉曼散射有关,样品分子量增加,拉曼散射强度一般也会增加。对于一定的样品,强度I与入射光强度I0、散射光频率ns、分子极化率a有如下关系:I=CI0ns4a2(这里C是一个常数)。

5、拉曼散射的选择定则

外加交变电磁场作用于分子内的原子核和核外电子,可以使分子电荷分布的形状发生畸变,产生诱导偶极矩。极化率是分子在外加交变电磁场作用下产生诱导偶极矩大小的一种度量。极化率高,表明分子电荷分布容易发生变化。如果分子的振动过程中分子极化率也发生变化,则分子能对电磁波产生拉曼散射,称分子有拉曼活性。有红外活性的分子振动过程中有偶极矩的变化,而有拉曼活性的分子振动时伴随着分子极化率的改变。因此,具有固有偶极矩的极化基团,一般有明显的红外活性,而非极化基团没有明显的红外活性。拉曼光谱恰恰与红外光谱具有互补性。凡是具有对称中心的分子或基团,如果有红外活性,则没有拉曼活性;反之,如果没有红外活性,则拉曼活性比较明显。一般分子或基团多数是没有对称中心的,因而很多基团常常同时具有红外和拉曼活性。当然,具体到某个基团的某个振动,红外活性和拉曼活性强弱可能有所不同。有的基团如乙烯分子的扭曲振动,则既无红外活性又无拉曼活性。

拉曼光谱傅立叶变换红外的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于傅立叶变换拉曼光谱仪原理、拉曼光谱傅立叶变换红外的信息别忘了在本站进行查找喔。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624