资讯

承天示优,优品至上。

傅立叶变换红外样品要求(傅立叶变换红外光谱仪样品测试实验)

承天示优官方账号 2022-12-15 资讯 920 views 0

今天给朋友们分享一下有关傅立叶变换红外样品要求的知识,其中当然也会对傅立叶变换红外光谱仪样品测试实验进行一部分的介绍,加入能碰巧解决你现在遇到的困难,不要忘了关注本站,那我们现在开始吧!

本文目录一览:

 显微傅里叶变换红外光谱研究

煤的红外吸收光谱常见的有三大类吸收峰,第一类为饱和烃结构吸收峰,包括700~720cm-1、1380cm-1、1460cm-1、2850cm-1、2950cm-1等;第二类为芳烃结构吸收峰,包括:730~900cm-1、1000~1100cm-1、1545~1600cm-1、3030cm-1、3050cm-1等;第三类为含O、S、N等杂环化合物的吸收峰,包括1100~1300cm-1(1290cm-1、1250cm-1、1170cm-1)、1650~1750cm-1、3200~3600cm-1等。对煤来说,其脂肪族结构中多缺乏代表海相源岩特征的长链烷烃-(CH2)n-中的C-C骨架的变形振动吸收峰(700~720cm-1),较多出现的是甲基(CH3)(1380cm-1)、次甲基(CH2)(1460cm-1)的弯曲振动吸收峰和甲基、亚甲基的伸缩振动吸收峰(分别为2850cm-1和2950cm-1);芳烃结构的吸收峰则都可能出现,但以1000~1200cm-1(代表芳环CH面内弯曲振动吸收)、1450cm-1、1600cm-1(代表芳烃中-C=C-基团的伸展振动吸收峰)和3030cm-1、3050cm-1(代表芳核上次亚甲基(CH)的面内伸缩振动吸收峰)比较常见。而含杂原子的吸收峰以3200~3600cm-1(代表酚、醇和羧酸中OH基团、水中的OH基及NH基团的伸缩振动)吸收峰常见,而且比较强。

根据现有研究成果和认识程度,红外吸收光谱在烃源岩研究中的应用见表7-2;研究区石炭—二叠纪煤中不同显微组分的类型参数特征归纳于表7-3。

表7-2 红外吸收光谱在烃源岩研究中的应用综合表

表7-3 研究区不同显微组分红外光谱参数

注:K—孔古4井;X—徐14井;D—大参1井;C—太原组;P—山西组;D—基质镜质体B。

一、角质体

角质体的化学成分是角质和蜡,其中角质是一种生物聚酯,为一种不溶饱和羟基酸聚酯,具有高聚合特征,是植物所产生的最稳定物质,其氢含量可达10%左右。尽管其生烃活化能较高,但其表层的可溶烃类和蜡质却能早期生烃。从角质体的红外吸收光谱图(图7-1)可以看出,其峰型比较简单,在波数1465cm-1、2846cm-1和2925cm-1处有明显而且较强的吸收峰,它们均是脂肪族结构的吸收峰,分别代表烷链结构上的CH3、CH2不对称变形振动(1465cm-1);脂肪族CH2对称伸缩振动(2850cm-1)和脂肪族CH2不对称伸缩振动(2920cm-1);而芳香族结构的吸收峰在谱图中都极其微弱,充分反映了角质体富氢贫氧的特征。在脂肪族结构中,以亚甲基的吸收峰最强,甲基和烷链结构上的CH3、CH2吸收峰也比较尖锐,这说明结构中含有一定的长链脂肪烃。根据峰面积求得的富氢指数ICH2高达64;其脂芳比高达21,按照脂肪族基团中的亚甲基和次甲基以生油为主(秦匡中,1995)的认识,充分说明角质体具有很好的生油能力。

据热模拟研究(金奎励等,1997),角质体中代表脂肪族基团的2950cm-1和2850cm-1吸收峰到260℃(Ro为0.72%)时就达到最大值,到360℃(Ro为1.22%)时仍然很强。从荧光性质变化与温度关系看,在260~290℃时,Q值变化最大,荧光光谱较乱,呈多峰状,到360℃时仍见有极弱的暗褐色荧光。这说明角质体在热演化过程中具有液态窗范围宽的特点。

图7-1 孔古4井山西组煤中角质体FT.IR谱图

二、树脂体

树脂体的主要生源母质是树脂和蜡,树脂主要化学成分是倍半萜、二萜和三萜酸类等树脂酸。树脂酸分子量小,分子结构简单,易于早期生烃(Snowdon,1991),而蜡的主要成分是更加富氢的长直链醇类和脂肪酸类合成的脂类,也是早期生烃的母质之一。因此,树脂体生烃比其他壳质组分都早。从谱图(图7-2)上可以看出,它与角质体的峰型、峰位及强度都具有很好的相似性,即主要由脂肪族结构的1460cm-1、2850cm-1和2920cm-1强吸收峰组成,代表芳核结构的吸收峰除了在代表芳烃中CH面外变形振动(810cm-1)有所显示外,其他峰位都很弱;这从总体上反映了树脂体富氢的特征。但和角质体相比,在代表脂肪族CH2不对称伸缩振动(2920cm-1)及烷链结构上的CH3、CH2不对称变形振动吸收峰(1460cm-1)中有明显的肩峰显示,这说明在脂肪族CH2不对称伸缩振动(2920cm-1)的同时,伴随有脂肪族和脂环核CH伸缩振动(2900cm-1)和脂肪族CH3不对称伸缩振动(2950cm-1),根据对不同有机组分成烃动力学的研究,角质体具有单一的活化能。而树脂体则有一定的分布范围,表示结构上比角质体复杂一些。从参数类型看,各项参数指标值和角质体相比都明显偏低,尤其是富氢指数中的

(2950cm-1/1600cm-1,反映富含次甲基CH2的程度)变得很低。这种现象并不说明树脂体的富氢程度比角质体低,而是由于树脂体具有早期生烃特点造成的。即倾向于以生油为主的亚甲基、次甲基随着树脂体早期生油(实验样品Ro已达0.73%)已大大减少。但即使已进入正常的生油高峰期,树脂体仍然具有丰富的脂链结构,这些都说明树脂体的生油潜力比角质体更大。据热模拟研究,树脂体在镜质组反射率Ro为0.5%时就有渗出沥青体出现,其荧光可持续到290℃(Ro为0.87%),其CH2、CH3伸缩振动吸收峰的最大变化幅度是在230℃(Ro小于0.65%)以前,这些特征都说明树脂体在热演化过程中生烃比角质体早。

图7-2 徐14井太原组煤中树脂体FT.IR谱图

三、孢子体

孢子体主要由性质很稳定的孢粉素组成,它具有羟基、烯属双键和芳香结构特征(Given,1984),其化学组成也含有较多的脂肪族结构,属于富氢显微组分。但由于聚合程度高,其生烃活化能也相对较高,生烃较晚。研究样品中的孢子体以小孢子体为主,偶见的大孢子体在荧光下呈褐色—深褐色,说明已大量失去氢并出现芳构化。但小孢子体个体微小(一般<5μm),受测量微区(测量范围4μm)的限制,测试出的光谱图明显受光通量不足、信噪比低及周围其他组分信息的影响而复杂化。从谱图可以看出(图7-3),总体表现出代表芳烃中芳核的C=C骨架振动吸收峰(1545~1645cm-1)和对称弯曲振动(1350~1420cm-1)的吸收峰突出为特征,且前者峰型尖锐,峰强度较大;后者峰型较宽,强度较低。代表脂肪族结构的吸收峰仅在2900em-1有较弱的显示。虽然谱图因干扰太大而失真,但总的趋势可以看出,孢子体富氢程度远不如角质体和树脂体,相同热演化阶段其芳构化程度比角质体和树脂体高的多。从参数看,其各项指标(

)都比角质体和树脂体低,脂芳比为2.02,这说明作为煤中富氢组分,其生烃性能不如角质体和树脂体。孢子体的化学聚合程度较高,生烃活化能分布范围大,反映其化学组成比较复杂。据热模拟研究(金奎励等1997),孢子体在<290℃(Ro为0.87%)时,脂族基团不断得到加强,>320℃(Ro为1.04%),脂族基团吸收峰强度变小。290~320℃为最大生烃范围。

图7-3 孔古4井太原组煤中孢子体红外吸收光谱图

四、基质镜质体

分别选择孔古4井、大参1、徐14井的太原组和山西组煤中基质镜质体进行对比研究。从光谱图可以看出(图7-4),基质镜质体的红外吸收光谱图中脂肪族结构吸收峰、芳香族结构吸收峰、杂原子结构的吸收峰都有显示。在脂肪族结构中,代表脂肪族CH2不对称伸缩振动(2920cm-1)和CH2对称伸缩振动的吸收峰普遍发育且二峰相联,表明基质镜质体中氢有一定的含量,而且以利于生油的亚甲基和次甲基较发育为特征,具有一定的生烃潜力,从而论证了基质镜质体在本区煤成烃中的意义。芳香族结构中,代表C-O-C伸缩振动(1000~1100cm-1)的吸收峰尖锐、最强且有肩峰,其次是芳烃中芳核的C=C骨架振动吸收峰(1600cm-1)和烷链结构上的CH3、CH2不对称变形振动吸收峰(1460cm-1,区间值为1421~1480cm-1),而1460cm-1吸收峰的出现说明样品中含有一定量的脂族长链结构,这些脂族长链结构的出现证实了基质镜质体中超微类脂体的存在。在杂原子基因中,以含氧原子的3420cm-1吸收峰最明显,但峰型较宽,包容了从3200~3600cm-1的整个区间,因此,它实际上代表了含氧、含硫等杂原子的酚、醇、羧酸和水的(OH)伸缩振动,说明其中杂原子基团类型多而且以含氧杂原子基团为主的特征。

从孔古4井太原组和山西组煤中基质镜质体的红外吸收光谱看,除了峰型宽窄和高低稍有差异外,峰位分布基本相同,但富氢参数和富链参数都表现出太原组煤优于山西组煤的特征。大参1井太原组和山西组基质镜质体的红外吸收光谱在峰位方面没有大的变化,但在峰型和峰强度方面都有明显的差异,尤其是代表脂肪族结构的CH3不对称伸缩振动(2920cm-1)和CH2对称伸缩振动(2850cm-1)的吸收峰,太原组煤的基质镜质体明显比山西组强的多,这充分说明太原组煤的基质镜质体比山西组煤的基质镜质体富氢。从各项参数指标看,脂芳比(1460/1600cm-1),

(2920/1600cm-1)都以孔古4井太原组煤中基质镜质体较好,而徐14井太原组基质镜质体和大参1井山西组煤中基质镜质体相对偏低;从时代看,太原组比山西组煤中基质镜质体的各项参数指标都相对偏高。

图7-4 基质镜质体的Micm-FT-IR谱图

 海相单组分显微傅里叶变换红外光谱研究

用于研究的样品多来自渤海湾盆地下古生界,个别样品来自山西河曲晚石炭世太原组和挪威中寒武世—早奥陶世Alum页岩。样品包括6大系列,分别为不同热演化阶段的镜状体、不同成因及类型的沥青、不同类型的藻类组、不同类型的疑源组、不同类型无定形组及动物硬体有机质等等(表3-1)。

表3-1 分析样品一览表

一、显微组分红外光谱吸收峰特征及其常用参数随着红外光谱在源岩中应用的不断深入,尤其是在烃源岩评价方面的运用,人们除发现烃源岩显微组分的特征吸收峰能清楚表征相关有机质类型的化学结构、化学性质特点外(表3-2),还发现了有关峰强度比值也可以较好的反映有机质的性质(表3-3)。

表3-2 烃源岩有机质红外光谱吸收峰归属

表3-3 烃源岩中显微组分红外光谱参数

二、显微傅里叶变换红外光谱分析结果及其意义

镜状体、沥青组、钙质藻类-表附藻(Epiphyton)、动物硬体有机质、疑源组、有机藻类-粘球形藻(Gloeocapsomorpha prisca)和无定形组等海相单组分显微傅里叶变换红外光谱参数统计结果列于表3-4,以镜状体和沥青组为例,详细分析之。

表3-4 海相单组分显微傅里叶变换红外光谱参数统计结果

1.镜状体

从低熟(Ro=0.65%)、高成熟(Ro=1.98)到过成熟(Ro=3.67%)阶段的镜状体红外光谱(图3-1)看,随成熟度增加,镜状体中不同类型官能团出现规律性变化。其一,2800~3000cm-1范围内CH、CH2和CH3官能团伸缩振动的吸收峰强度较弱且不断降低,直至最后消失,反映CH3对称弯曲振动的1380cm-1峰和代表烷链结构上CH2与CH3不对称变形振动的1460cm-1峰随成熟度增高的递变规律有别于反映CH、CH2、CH3伸缩振动的2800~3000cm-1区间峰,其在不同热演化阶段均有一定程度的反映,但总趋势仍是不断减弱。造成CH、CH2和CH3伸缩振动峰最后消失的原因是脂肪族链与脂环断裂脱离显微组分本身所致。而反映弯曲振动与变形振动光谱的始终存在,则可能是这种类型烷链结构上的CH2、CH3与其他更稳定芳核结合密切相关。代表正构烷烃侧链上(CH2)n4骨架振动的720cm-1吸收峰,仅出现于高成熟阶段镜状体,而在于低成熟和过成熟阶段均未出现这可能与源岩中有机质演化作用相联系。其二,反映芳烃C=C骨架振动的1600cm-1峰相对强度较大,该峰分布范围较宽,随成熟度增加主峰向高波数方向不断偏移,这种偏移是芳烃聚合程度和芳环稠合度增加引起的(金奎励等,1997)。与1600cm-1处C=C骨架振动峰相比,1500cm-1处代表稠环芳核C=C骨架振动的吸收峰虽不如前者发育,但亦表现出显著的峰强,该峰主体特点为分布范围狭窄,峰形尖锐,始终保持一定强度,主峰随成熟度变化摆动不甚明显。位于730~921cm-1范围内的聚合稠环周围的C-H面外变形振动及其取代值吸收峰在不同成熟阶段均较为明显,且有不断增加之趋势,这似乎是芳核不断增大造成的。其三,随成熟度增加,3200~3600cm-1范围内反映组分含水量变化的(-OH)羟基吸收峰衰减迅速,到近变质阶段基本消失。代表芳香族酸酐中羰基(C=O)的1700cm-1峰和代表脂肪酸酐中羰基的1745cm-1峰一直存在,但均较弱,总的规律是后者衰减快于前者。1000~1330cm-1区间内的(Ar-O-C,Ar-O-Ar,R-O-C,SO2-C-O-C,C-O-C等)醚、酯类吸收峰在各成熟阶段均有,且呈强度不断增大复又有所下降之趋势。这一规律的出现原因在于:低成熟阶段,镜状体有机大分子的支链发育,拥有类型众多的含氧官能团;随成熟度不断增加,一些易于脱落的不稳定支链官能团脱落,相对稳定的以氧桥为特征的醚、酯键类官能团继续存在,且相对强度得到加强,然而由于氧桥形式的官能团终非最为稳定的结构形式,因而进入近变质阶段不断减少并为芳香结构大分子取而代之。其四,除上述特征峰随成熟度增加作有规律变化以外,富氢参数

,富氧参数

,类型参数A因子等不断衰减,芳构化参数

不断增加,其余参数规律性不甚显著(表3-4)。不同参数随成熟度变化显示的镜状体有机结构变化与特征峰所显示的特征一致。

图3-1 镜状体反射式Micro-FT-IR光谱图

(a)受磨蚀镜状体(Ro=0.65%);(b)镜状体(Ro=0.65%);(c)镜状体(Ro=1.98%);(d)镜状体(Ro=3.67%)

2.沥青组

工作区处于高—过成熟阶段的叠层石原沥青、动物型原沥青(介形类)和瘤状沥青等三类不同成因沥青的红外光谱分析发现,其均具有吸收峰单调、芳构化程度较高、缺乏脂族吸收峰的共同特征(图3-2)。但由于三种类型沥青成因不同,因而各有自己的特征峰位和峰强。代表CH、CH2、CH3伸缩振动的2800~3000cm-1区间峰未见;反映CH2、CH3变形振动的1460cm-1峰以动物型原沥青和瘤状沥青稍强,而叠层石原沥青表现较弱;表征CH3弯曲振动的1380cm-1峰在瘤状沥青中略强,两种原沥青则表现极弱,说明正构烷链上(CH2)n>4骨架振动的720cm-1峰仅在动物型原沥青中有所显示,其余两类沥青中不曾发现。单就脂肪族官能团较弱这一点而言,说明进入高—过成熟阶段的各类沥青脂族支链都比较短。

图3-2 不同类型沥青体反射式Mincro-FT-IR光谱图

(a)藻类型叠层石原沥青(Ro=1.48%);(b)动物型原沥青(Ro=1.52%);(c)瘤状沥青(Ro=2.01%)

三种类型比较,似乎藻类型叠层石原沥青支链最短,动物型原沥青与瘤状沥青在伯仲之间。代表芳烃(C=C)骨架振动的1600cm-1峰在三类沥青中较强,其中动物型原沥青表现最强;代表稠合芳核(C=C)骨架振动的1500cm-1峰在三类沥青中表现亦强劲,尤以瘤状沥青最为显著;体现芳烃面外振动的730~921cm-1范围峰极为明显,其中叠层石原沥青以750cm-1峰的极度发育为特色,动物型原沥青与瘤状沥青则体现出870cm-1其明显优势。显示组分含水量的3400cm-1羟基(OH)峰以叠层石原沥青较显著,其余两种类型沥青无此峰。代表酸酐中C=O伸缩振动的1680cm-1峰均有一定强度,而1690~1770cm-1范围内的C=O骨架振动峰较弱。1000~1340cm-1范围内反映醚、酯、醇类官能团伸缩振动的吸收峰在三类沥青中均有出现,但从相对强度看以叠层石原沥青最弱。上述分析表明三类沥青体中,似乎瘤状沥青与动物型原沥青特征比较接近,各种光谱参数也支持这种看法(表3-4),它从一个侧面反映了这二者在成因上可能有某种联系,而与叠层石原沥青差异较大。

傅立叶变换红外光谱仪的优点?

其主要优点如下:

1)扫描速度快。傅立叶变换红外光谱仪的扫描速度比色散型仪器快数百倍,而且在任何测量时间内都能获得辐射源的所有频率的全部信息,即所谓的“多路传输”。对于稳定的样品,在一次测量中一般采用多次扫描、累加求平均法得干涉图,这就改善了信噪比。在相同的总测量时间和相同的分辨率条件下,傅里叶变换红外光谱法的信噪比比色散型的要提高数十倍以上。

2)具有很高的分辨率。分辨率是红外光谱仪的主要性能指标之一,指光谱仪对两个靠得很近的谱线的辨别能力。傅里叶变换红外光谱仪均有多档分辨率值供用户据实际需要随选随用。

3)波数精度高。波数是红外定性分析的关键参数,因此仪器的波数精度非常重要。因为干涉仪的动镜可以很精确地驱动,所以干涉图的变化很准确,同时动镜的移动距离是He-Ne激光器的干涉纹测量的,从而保证了所测的光程差很准确,因此在计算的光谱中有很高的波数精度和准确度,通常可到 0.01cm-1。

4)极高的灵敏度。色散型红外分光光度计大部分的光源能量都损失在入口狭缝的刀口上,而傅立叶变换红外仪没有狭缝的限制,辐射通量只与干涉仪的平面镜大小有关,在同样的分辨率下,其辐射通量比色散型仪器大得多,从而使检测器接受的信噪比增大,因此具有很高的灵敏度,由于此优点,使傅立叶变换红外光谱仪特别适合测量弱信号光谱。

5)研究光谱范围宽。一台傅立叶变换红外仪只要用计算机实现测量仪器的元器件(不同的分束器和光源等)的自动转换,就可以研究整个近红外、中红外和远红外区的光谱。

主要就这几点哈。

傅立叶红外检测需要在暗处吗

需要。根据查询傅立叶红外检测相关资料得知,傅立叶红外检测需要在暗处。傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。

关于傅立叶变换红外样品要求和傅立叶变换红外光谱仪样品测试实验的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624