资讯

承天示优,优品至上。

傅里叶红外光谱用途(傅里叶红外光谱图分析手册)

承天示优官方账号 2022-12-28 资讯 630 views 0

今天的文章给大伙介绍下傅里叶红外光谱用途,和傅里叶红外光谱图分析手册相关的内容,希望能对小伙伴们有所帮助,记得不要忘记收藏下本站喔。

本文目录一览:

傅里叶红外光谱仪干什么用的,可以测哪些参数,都有什么意义?

傅里叶红外光谱仪(FT-IR)是分子吸收光谱,不同的官能团,化学键振动或转动,对不同波数的红外光有吸收,据此,可以测定出样品有哪些官能团或化学键存在或变化,用以物质的定性、定量、反应过程等的研究。

为什么说傅里叶光谱在红外区有统治地位

红外光谱技术的最新进展是傅里叶变换红外光谱(FTIR)技术.

FTIR在信噪比、分辨率、速度和探测极限上具有很多优势.在红外研究领域,FTIR方法几乎完全取代了光栅分光法.

傅里叶变换光谱仪可以理解为以某种数学方式对光谱信息进行编码的摄谱仪,它能同时测量、记录所有谱元的信号,并以更高的效率采集来自光源的辐射能量,从而使它具有比传统光谱仪高得多的分辨率和信噪比;同时它的数字化的光谱数据,也便于计算机处理.正是这些基本优点,使傅里叶变换红外光谱方法发展成为目前中、远红外波段中最有力的光谱工具.

FTIR的优点

1.多通道(Fellgett优点)

在色散型仪器中,由于检测器只能响应入射光强度的变化,不能响应入射光频率.因此,在测量时,需把入射的复色光用单色器色散为不同频率的分辨单元.为了检测这些相对纯化的光,就需要用光阑窄缝滤掉绝大部分色散后的单色光,仅让某一频率单色光通过.为了能测定全光谱,只好顺序多次测定色散后不同频率的单色光.

对于FTIR光谱仪,入射光被干涉仪调制成声频波,不同频率的光被调制成不同的值,所用探测器既获得强度信息,又获得频率信息.各种频率光同时落到探测器上,无需分光测量.这样色散仪器每次仅测量全光谱很小的一部分,而FTIR却测了全部光谱.如在 波段范围内,用 分辨率进行测量,则测量所需分辨单元数 .用色散光谱仪在T时间内对 波段测量时,每个分辨单元所需的测定时间为 .与此相应,FTIR则为T.由于随机噪声引起的信噪比 与测量时间成正比,所以FTIR比色散型光谱仪信噪比高的多,并且分辨率越高,提高越大.在0.1cm-1分辨率时,提高近190倍.显然多通道的优点使FTIR的信噪比增加,伴随而来的是检测灵敏度大幅提高.

2.高光通量(Jacquinot优点)

在色散型仪器中,光路里设有狭缝式光阑,绝大部分光被它挡住,仅使极少部分光通过,并且分辨率越高,狭缝调得越窄,实际通过得光越少.加之光路中得许多光学元件也会损失光能,因而使色散型仪器光通量很小.FTIR光谱仪中除了有光能损失很少外,经常不设限光狭缝或其他限光元件.光可全部通过光孔,光通量很大.

光学系统的光通量Ω指通过它传送的光的总能量.光通量定义为光束的面积和立体角的乘积,即光阑面积和向准直镜孔径所张立体角的乘积,或者等效为准直光的面积和它的发散的立体角的乘积

在一些低分辨率的光谱仪中没有准直光阑,光源或探测器起着有效光阑的作用,限制了光通量的大小.

为了获得理想准直的光束(光束完美的平行),光阑必须无穷小,于是光通过量为零.光阑越大,光通量越大,而被准直的光束也越发散.然而,干涉仪中光束的发散度,或者它的光通量,是受到所要求的光谱分辨率限制的.因为对于一个给定的动镜位移,以不同的角度通过干涉仪的光线到达真正光轴有不同的光程差,它们对总干涉图信号的各自贡献将会模糊掉每个动镜位移的光程差.因此,分辨率要求越高,光发散要求越小.最佳的通过量与所研究的最高频率处的光谱分辨率是完全一致的.最大光通量定量地与光谱分辨率成比例

3.高测量精度(Connes优点)

色散型仪器的精度受很多条件的限制.如校正谱图精度的校样纯度、机械部件移动以及人为的读书误差等,都使这类仪器测量精度难于提高.一般很难达到0.1cm-1精度.

FTIR光谱仪的光学结构简单,干涉仪只有一个动镜是运动部件,通常动镜是在无摩擦的空气轴承上移动,其运动又受高度稳定的He-Ne激光干涉系统监控,因此测量的重复性和准确度都很十分高.加之在FTIR系统中,使用了单色性极好的He-Ne激光干涉系统作为采样标尺,确保采样精度达到 0 .001cm-1.

4.测量波段宽,全波段内分辨率一致

色散型光谱仪测量时,用色散法配以光阑狭缝取得单色光.但这些不同频率的单色光能量又不尽相同.为了保持所获得的能量近似不变,常常需要不断改变狭缝宽度,或用其他技术来调节光通量.这在技术上是很困难的.一种简化的办法是在中红外测量全波段光谱时,使用两种分辨率.色散型光谱仪无法在全波段范围内分辨率一致.

FTIR光谱仪以干涉法采集数据,以数字形式存储数据和运算,很容易做到分辨率一致.极宽的测量波段也是FTIR光谱仪特有的优点.它可用改换光源、分束器、探测器的办法,在同一台FTIR光谱仪上实现多波段测量.

傅立叶变换红外光谱仪的优点?

其主要优点如下:

1)扫描速度快。傅立叶变换红外光谱仪的扫描速度比色散型仪器快数百倍,而且在任何测量时间内都能获得辐射源的所有频率的全部信息,即所谓的“多路传输”。对于稳定的样品,在一次测量中一般采用多次扫描、累加求平均法得干涉图,这就改善了信噪比。在相同的总测量时间和相同的分辨率条件下,傅里叶变换红外光谱法的信噪比比色散型的要提高数十倍以上。

2)具有很高的分辨率。分辨率是红外光谱仪的主要性能指标之一,指光谱仪对两个靠得很近的谱线的辨别能力。傅里叶变换红外光谱仪均有多档分辨率值供用户据实际需要随选随用。

3)波数精度高。波数是红外定性分析的关键参数,因此仪器的波数精度非常重要。因为干涉仪的动镜可以很精确地驱动,所以干涉图的变化很准确,同时动镜的移动距离是He-Ne激光器的干涉纹测量的,从而保证了所测的光程差很准确,因此在计算的光谱中有很高的波数精度和准确度,通常可到 0.01cm-1。

4)极高的灵敏度。色散型红外分光光度计大部分的光源能量都损失在入口狭缝的刀口上,而傅立叶变换红外仪没有狭缝的限制,辐射通量只与干涉仪的平面镜大小有关,在同样的分辨率下,其辐射通量比色散型仪器大得多,从而使检测器接受的信噪比增大,因此具有很高的灵敏度,由于此优点,使傅立叶变换红外光谱仪特别适合测量弱信号光谱。

5)研究光谱范围宽。一台傅立叶变换红外仪只要用计算机实现测量仪器的元器件(不同的分束器和光源等)的自动转换,就可以研究整个近红外、中红外和远红外区的光谱。

主要就这几点哈。

傅里叶红外光谱仪有哪几部分,各自的功能

傅立叶红外光谱仪最核心的部分是 迈克尔逊干涉仪。可以说没有干涉仪就没有傅立叶变换红外光谱。正是因为红外光源经过迈克尔逊干涉仪发生多色光相干,经过样品吸收之后,检测器检测到含有样品信息的红外干涉光的干涉图信号,再经过计算机将干涉图信号经过傅立叶变换,才转换成红外光谱。

其余的部件,如:检测器,光源,光学反射镜,采集卡,计算机等。

光源:用于产生宽带的红外光,样品吸收光源产生的红外光后引起样品分子的振动态跃迁,从而引其透过样品的红外光在相应波长上的透过强度的变化,这也是红外光谱能检测分子振动特征峰的理论来源。

光学反射镜:用于改变红外光的光路

检测器:用于检测透过样品的红外吸收信号,并将光信号转换成电信号传送给计算机的采集卡。

采集卡:用于采集检测器检测到的信号,并将信号存储、处理成光谱。

计算机:用于控制光谱仪的运行,协调迈克尔逊干涉仪,检测器和采集卡的运行、数据采集和处理。

傅里叶红外光谱仪在电子行业失效分析方面有什么用处?

可用于用于农膜样本是EVA膜或是PE膜鉴定、锂电池膈膜物证鉴定的司法鉴定、拉杆胶套的内衬材质物证鉴定的司法鉴定等多个司法鉴定及物证鉴定案子中。

傅里叶红外光谱仪的用处

前面的兄弟说得不错。我也说两句:,能否测到这个混合物中样品的各个成分比重?这个可以尝试,如果前期工作,如标样,曲线做好,红外光谱可以实现。能否测到混合物中各个元素占比?这个应该不能,因为红外光谱仪不能测出元素及元素含量,只能测出官能团、化学键等分子结构。

仅供参考。可以到哪个学校,找一个红外光谱测试一下(要找同样研究方向的,不同领域红外的应用也不同)。

今天的傅里叶红外光谱用途有关的说明就先聊到这里啦,想指导更多有关于傅里叶红外光谱图分析手册的东西,可以移步到官网去查看哦,会有更多的惊喜等着你哦。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624