资讯

承天示优,优品至上。

傅立叶变换红外光谱结构图(什么是傅立叶变换红外光谱)

承天示优官方账号 2023-01-04 资讯 1213 views 0

今天的文章给大伙介绍下傅立叶变换红外光谱结构图,和什么是傅立叶变换红外光谱相关的内容,希望能对小伙伴们有所帮助,记得不要忘记收藏下本站喔。

本文目录一览:

红外光谱图怎么画

问题一:怎么看红外光谱图? (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:

不饱和度=F+1+(T-O)/2 其中:

F:化合价为4价的原子个数(主要是C原子),

T:化合价为3价的原子个数(主要是N原子),

O:化合价为1价的原子个数(主要是H原子),

(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物,而低于3000cm-1一般为饱和C-H伸缩振动吸收;

(3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:

炔 2200~2100 cm-1

烯 1680~1640 cm-1

芳环 1600,1580,1500,1450 cm-1

若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺反,邻、间、对);

(4)碳骨架类型确定后,再依据其他官能团,如 C=O, O-H, C-N 等特征吸收来判定化合物的官能团;

(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。

至此,分析基本搞定,剩下的就是背一些常见常用的健值了!

1.烷烃:C-H伸缩振动(3000-2850cm-1)

C-H弯曲振动(1465-1340cm-1)

一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。

2.烯烃:烯烃C-H伸缩(3100~3010cm-1)

C=C伸缩(1675~1640 cm-1)

烯烃C-H面外弯曲振动(1000~675cm-1)。

3.炔烃:伸缩振动(2250~2100cm-1)

炔烃C-H伸缩振动(3300cm-1附近)。

4.芳烃:3100~3000cm-1 芳环上C-H伸缩振动

1600~1450cm-1 C=C 骨架振动

880~680cm-1 C-H面外弯曲振动

芳香化合物重要特征:一般在1600,1580,1500和1450cm-1可能出现强度不等的4个峰。

880~680cm-1,C-H面外弯曲振动吸收,依苯环上取代基个数和位置不同而发生变化,在芳香化合物红外谱图分析中,常常用此频区的吸收判别异构体。

5.醇和酚:主要特征吸收是O-H和C-O的伸缩振动吸收,

O-H 自由羟基O-H的伸缩振动:3650~3600cm-1,为尖锐的吸收峰,

分子间氢键O-H伸缩振动:3500~3200cm-1,为宽的吸收峰;

C-O 伸缩振动:1300~1000cm-1

O-H 面外弯曲:769-659cm-1

6. 醚特征吸收:1300~1000cm-1 的伸缩振动

脂肪醚:1150~1060cm-1 一个强的吸收峰 芳香醚:两个C-O伸缩振动吸收:1270~1230cm-1(为Ar-O伸缩)1050~1000cm-1(为R-O伸缩)

7.醛和酮:醛的主要特征吸收:1750~1700cm-1(C=O伸缩)2820,2720cm-1(醛基C-H伸缩)

脂肪酮:1715cm-1,强的C=O伸缩振动吸收,如果羰基与烯键或芳环共轭会使吸收频率降低

8.羧酸:羧酸二聚体:3300~2500cm-1 宽,强的O-H伸缩吸收

1720~1706cm-1 C=O 吸收

1320~1210cm-1 C-O伸缩

920cm-1 成键的O-H键的面外弯曲振动

9.酯:饱和脂肪族酯(除甲酸酯外)......

问题二:红外光谱图数据怎么用origin画图 相同的X坐标,其它分别为y1,y2,y3.....选中所有列作图,即可.把多条红外光谱图用origin整合到一张图上。

问题三:红外图谱做出来了怎么描述 你要根据你测的物质进行图谱解析,网上也有标准中红外样品谱库。你可以看下《傅里叶变换红外光谱仪》是由翁诗甫编写,附录很多官能团对应的波数;近红外推荐你看近红外光谱解析实用指南((美)杰尔・沃克曼)。相信看完两本书,就能很好解答你的问题。

 海相单组分显微傅里叶变换红外光谱研究

用于研究的样品多来自渤海湾盆地下古生界,个别样品来自山西河曲晚石炭世太原组和挪威中寒武世—早奥陶世Alum页岩。样品包括6大系列,分别为不同热演化阶段的镜状体、不同成因及类型的沥青、不同类型的藻类组、不同类型的疑源组、不同类型无定形组及动物硬体有机质等等(表3-1)。

表3-1 分析样品一览表

一、显微组分红外光谱吸收峰特征及其常用参数随着红外光谱在源岩中应用的不断深入,尤其是在烃源岩评价方面的运用,人们除发现烃源岩显微组分的特征吸收峰能清楚表征相关有机质类型的化学结构、化学性质特点外(表3-2),还发现了有关峰强度比值也可以较好的反映有机质的性质(表3-3)。

表3-2 烃源岩有机质红外光谱吸收峰归属

表3-3 烃源岩中显微组分红外光谱参数

二、显微傅里叶变换红外光谱分析结果及其意义

镜状体、沥青组、钙质藻类-表附藻(Epiphyton)、动物硬体有机质、疑源组、有机藻类-粘球形藻(Gloeocapsomorpha prisca)和无定形组等海相单组分显微傅里叶变换红外光谱参数统计结果列于表3-4,以镜状体和沥青组为例,详细分析之。

表3-4 海相单组分显微傅里叶变换红外光谱参数统计结果

1.镜状体

从低熟(Ro=0.65%)、高成熟(Ro=1.98)到过成熟(Ro=3.67%)阶段的镜状体红外光谱(图3-1)看,随成熟度增加,镜状体中不同类型官能团出现规律性变化。其一,2800~3000cm-1范围内CH、CH2和CH3官能团伸缩振动的吸收峰强度较弱且不断降低,直至最后消失,反映CH3对称弯曲振动的1380cm-1峰和代表烷链结构上CH2与CH3不对称变形振动的1460cm-1峰随成熟度增高的递变规律有别于反映CH、CH2、CH3伸缩振动的2800~3000cm-1区间峰,其在不同热演化阶段均有一定程度的反映,但总趋势仍是不断减弱。造成CH、CH2和CH3伸缩振动峰最后消失的原因是脂肪族链与脂环断裂脱离显微组分本身所致。而反映弯曲振动与变形振动光谱的始终存在,则可能是这种类型烷链结构上的CH2、CH3与其他更稳定芳核结合密切相关。代表正构烷烃侧链上(CH2)n4骨架振动的720cm-1吸收峰,仅出现于高成熟阶段镜状体,而在于低成熟和过成熟阶段均未出现这可能与源岩中有机质演化作用相联系。其二,反映芳烃C=C骨架振动的1600cm-1峰相对强度较大,该峰分布范围较宽,随成熟度增加主峰向高波数方向不断偏移,这种偏移是芳烃聚合程度和芳环稠合度增加引起的(金奎励等,1997)。与1600cm-1处C=C骨架振动峰相比,1500cm-1处代表稠环芳核C=C骨架振动的吸收峰虽不如前者发育,但亦表现出显著的峰强,该峰主体特点为分布范围狭窄,峰形尖锐,始终保持一定强度,主峰随成熟度变化摆动不甚明显。位于730~921cm-1范围内的聚合稠环周围的C-H面外变形振动及其取代值吸收峰在不同成熟阶段均较为明显,且有不断增加之趋势,这似乎是芳核不断增大造成的。其三,随成熟度增加,3200~3600cm-1范围内反映组分含水量变化的(-OH)羟基吸收峰衰减迅速,到近变质阶段基本消失。代表芳香族酸酐中羰基(C=O)的1700cm-1峰和代表脂肪酸酐中羰基的1745cm-1峰一直存在,但均较弱,总的规律是后者衰减快于前者。1000~1330cm-1区间内的(Ar-O-C,Ar-O-Ar,R-O-C,SO2-C-O-C,C-O-C等)醚、酯类吸收峰在各成熟阶段均有,且呈强度不断增大复又有所下降之趋势。这一规律的出现原因在于:低成熟阶段,镜状体有机大分子的支链发育,拥有类型众多的含氧官能团;随成熟度不断增加,一些易于脱落的不稳定支链官能团脱落,相对稳定的以氧桥为特征的醚、酯键类官能团继续存在,且相对强度得到加强,然而由于氧桥形式的官能团终非最为稳定的结构形式,因而进入近变质阶段不断减少并为芳香结构大分子取而代之。其四,除上述特征峰随成熟度增加作有规律变化以外,富氢参数

,富氧参数

,类型参数A因子等不断衰减,芳构化参数

不断增加,其余参数规律性不甚显著(表3-4)。不同参数随成熟度变化显示的镜状体有机结构变化与特征峰所显示的特征一致。

图3-1 镜状体反射式Micro-FT-IR光谱图

(a)受磨蚀镜状体(Ro=0.65%);(b)镜状体(Ro=0.65%);(c)镜状体(Ro=1.98%);(d)镜状体(Ro=3.67%)

2.沥青组

工作区处于高—过成熟阶段的叠层石原沥青、动物型原沥青(介形类)和瘤状沥青等三类不同成因沥青的红外光谱分析发现,其均具有吸收峰单调、芳构化程度较高、缺乏脂族吸收峰的共同特征(图3-2)。但由于三种类型沥青成因不同,因而各有自己的特征峰位和峰强。代表CH、CH2、CH3伸缩振动的2800~3000cm-1区间峰未见;反映CH2、CH3变形振动的1460cm-1峰以动物型原沥青和瘤状沥青稍强,而叠层石原沥青表现较弱;表征CH3弯曲振动的1380cm-1峰在瘤状沥青中略强,两种原沥青则表现极弱,说明正构烷链上(CH2)n>4骨架振动的720cm-1峰仅在动物型原沥青中有所显示,其余两类沥青中不曾发现。单就脂肪族官能团较弱这一点而言,说明进入高—过成熟阶段的各类沥青脂族支链都比较短。

图3-2 不同类型沥青体反射式Mincro-FT-IR光谱图

(a)藻类型叠层石原沥青(Ro=1.48%);(b)动物型原沥青(Ro=1.52%);(c)瘤状沥青(Ro=2.01%)

三种类型比较,似乎藻类型叠层石原沥青支链最短,动物型原沥青与瘤状沥青在伯仲之间。代表芳烃(C=C)骨架振动的1600cm-1峰在三类沥青中较强,其中动物型原沥青表现最强;代表稠合芳核(C=C)骨架振动的1500cm-1峰在三类沥青中表现亦强劲,尤以瘤状沥青最为显著;体现芳烃面外振动的730~921cm-1范围峰极为明显,其中叠层石原沥青以750cm-1峰的极度发育为特色,动物型原沥青与瘤状沥青则体现出870cm-1其明显优势。显示组分含水量的3400cm-1羟基(OH)峰以叠层石原沥青较显著,其余两种类型沥青无此峰。代表酸酐中C=O伸缩振动的1680cm-1峰均有一定强度,而1690~1770cm-1范围内的C=O骨架振动峰较弱。1000~1340cm-1范围内反映醚、酯、醇类官能团伸缩振动的吸收峰在三类沥青中均有出现,但从相对强度看以叠层石原沥青最弱。上述分析表明三类沥青体中,似乎瘤状沥青与动物型原沥青特征比较接近,各种光谱参数也支持这种看法(表3-4),它从一个侧面反映了这二者在成因上可能有某种联系,而与叠层石原沥青差异较大。

怎么看红外光谱图?

1,根据分子式计算不饱和度公式: 不饱和度 Ω=n4+1+(n3-n1)/2 其中: n4:化合价为4价的原子个数, n3:化合价为3价的原子个数, n1:化合价为1价的原子个数。

2,分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收;

3,若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔: 2200~2100 cm-1, 烯:1680~1640 cm-1 芳环:1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);

4,碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;

5,解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。

扩展资料:

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱,又称分子振动光谱或振转光谱。

通常将红外光谱分为三个区域:近红外区(0.75~2.5μm)、中红外区(2.5~25μm)和远红外区(25~300μm)。一般说来,近红外光谱是由分子的倍频、合频产生的;中红外光谱属于分子的基频振动光谱;远红外光谱则属于分子的转动光谱和某些基团的振动光谱。

由于绝大多数有机物和无机物的基频吸收带都出现在中红外区,因此中近红外光谱仪红外区是研究和应用最多的区域,积累的资料也最多,仪器技术最为成熟。

参考资料:百度百科-红外光谱

傅里叶红外光谱仪结构示意图及介绍

如图:

傅里叶红外光谱仪主要由光源(硅碳棒、高压汞灯)、迈克耳孙(M6E1驯)干涉仪、检测器、计算机和记录仅组成。核心部分为迈克耳孙干涉仪,它将光源来的信号以干涉图的形式送往计要机进行傅里叶变换的数学处理,最后将干涉图还原成光谱图。

5. 傅里叶变换红外光谱仪的基本结构,有哪些特点?简述工作原理?

红外线和可见光一样都是电磁波,而红外线是波长介于可见光和微波之间的一段电磁波。红外光又可依据波长范围分成近红外、中红外和远红外三个波区,其中中红外区(2.5~25μm;4000~400cm-1)能很好地反映分子内部所进行的各种物理过程以及分子结构方面的特征,对解决分子结构和化学组成中的各种问题最为有效,因而中红外区是红外光谱中应用最广的区域,一般所说的红外光谱大都是指这一范围。

红外光谱属于吸收光谱,是由于化合物分子振动时吸收特定波长的红外光而产生的,化学键振动所吸收的红外光的波长取决于化学键动力常数和连接在两端的原子折合质量,也就是取决于分子的结构特征。这就是红外光谱测定化合物结构的理论依据。

红外光谱作为“分子的指纹”广泛用于分子结构和物质化学组成的研究。根据分子对红外光吸收后得到谱带频率的位置、强度、形状以及吸收谱带和温度、聚集状态等的关系便可以确定分子的空间构型,求出化学建的力常数、键长和键角。从光谱分析的角度看主要是利用特征吸收谱带的频率推断分子中存在某一基团或键,由特征吸收谱带频率的变化推测临近的基团或键,进而确定分子的化学结构,当然也可由特征吸收谱带强度的改变对混合物及化合物进行定量分析。

傅里叶红外光谱仪由光源、迈克尔逊干涉仪、样品池、检测器和计算机组成,由光源发出的光经过干涉仪转变成干涉光,干涉光中包含了光源发出的所有波长光的信息。当上述干涉光通过样品时某一些波长的光被样品吸收,成为含有样品信息的干涉光,由计算机采集得到样品干涉图,经过计算机快速傅里叶变换后得到吸光度或透光率随频率或波长变化的红外光谱图。

朋友可以到行业内专业的网站进行交流学习!

分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

 显微傅里叶变换红外光谱研究

煤的红外吸收光谱常见的有三大类吸收峰,第一类为饱和烃结构吸收峰,包括700~720cm-1、1380cm-1、1460cm-1、2850cm-1、2950cm-1等;第二类为芳烃结构吸收峰,包括:730~900cm-1、1000~1100cm-1、1545~1600cm-1、3030cm-1、3050cm-1等;第三类为含O、S、N等杂环化合物的吸收峰,包括1100~1300cm-1(1290cm-1、1250cm-1、1170cm-1)、1650~1750cm-1、3200~3600cm-1等。对煤来说,其脂肪族结构中多缺乏代表海相源岩特征的长链烷烃-(CH2)n-中的C-C骨架的变形振动吸收峰(700~720cm-1),较多出现的是甲基(CH3)(1380cm-1)、次甲基(CH2)(1460cm-1)的弯曲振动吸收峰和甲基、亚甲基的伸缩振动吸收峰(分别为2850cm-1和2950cm-1);芳烃结构的吸收峰则都可能出现,但以1000~1200cm-1(代表芳环CH面内弯曲振动吸收)、1450cm-1、1600cm-1(代表芳烃中-C=C-基团的伸展振动吸收峰)和3030cm-1、3050cm-1(代表芳核上次亚甲基(CH)的面内伸缩振动吸收峰)比较常见。而含杂原子的吸收峰以3200~3600cm-1(代表酚、醇和羧酸中OH基团、水中的OH基及NH基团的伸缩振动)吸收峰常见,而且比较强。

根据现有研究成果和认识程度,红外吸收光谱在烃源岩研究中的应用见表7-2;研究区石炭—二叠纪煤中不同显微组分的类型参数特征归纳于表7-3。

表7-2 红外吸收光谱在烃源岩研究中的应用综合表

表7-3 研究区不同显微组分红外光谱参数

注:K—孔古4井;X—徐14井;D—大参1井;C—太原组;P—山西组;D—基质镜质体B。

一、角质体

角质体的化学成分是角质和蜡,其中角质是一种生物聚酯,为一种不溶饱和羟基酸聚酯,具有高聚合特征,是植物所产生的最稳定物质,其氢含量可达10%左右。尽管其生烃活化能较高,但其表层的可溶烃类和蜡质却能早期生烃。从角质体的红外吸收光谱图(图7-1)可以看出,其峰型比较简单,在波数1465cm-1、2846cm-1和2925cm-1处有明显而且较强的吸收峰,它们均是脂肪族结构的吸收峰,分别代表烷链结构上的CH3、CH2不对称变形振动(1465cm-1);脂肪族CH2对称伸缩振动(2850cm-1)和脂肪族CH2不对称伸缩振动(2920cm-1);而芳香族结构的吸收峰在谱图中都极其微弱,充分反映了角质体富氢贫氧的特征。在脂肪族结构中,以亚甲基的吸收峰最强,甲基和烷链结构上的CH3、CH2吸收峰也比较尖锐,这说明结构中含有一定的长链脂肪烃。根据峰面积求得的富氢指数ICH2高达64;其脂芳比高达21,按照脂肪族基团中的亚甲基和次甲基以生油为主(秦匡中,1995)的认识,充分说明角质体具有很好的生油能力。

据热模拟研究(金奎励等,1997),角质体中代表脂肪族基团的2950cm-1和2850cm-1吸收峰到260℃(Ro为0.72%)时就达到最大值,到360℃(Ro为1.22%)时仍然很强。从荧光性质变化与温度关系看,在260~290℃时,Q值变化最大,荧光光谱较乱,呈多峰状,到360℃时仍见有极弱的暗褐色荧光。这说明角质体在热演化过程中具有液态窗范围宽的特点。

图7-1 孔古4井山西组煤中角质体FT.IR谱图

二、树脂体

树脂体的主要生源母质是树脂和蜡,树脂主要化学成分是倍半萜、二萜和三萜酸类等树脂酸。树脂酸分子量小,分子结构简单,易于早期生烃(Snowdon,1991),而蜡的主要成分是更加富氢的长直链醇类和脂肪酸类合成的脂类,也是早期生烃的母质之一。因此,树脂体生烃比其他壳质组分都早。从谱图(图7-2)上可以看出,它与角质体的峰型、峰位及强度都具有很好的相似性,即主要由脂肪族结构的1460cm-1、2850cm-1和2920cm-1强吸收峰组成,代表芳核结构的吸收峰除了在代表芳烃中CH面外变形振动(810cm-1)有所显示外,其他峰位都很弱;这从总体上反映了树脂体富氢的特征。但和角质体相比,在代表脂肪族CH2不对称伸缩振动(2920cm-1)及烷链结构上的CH3、CH2不对称变形振动吸收峰(1460cm-1)中有明显的肩峰显示,这说明在脂肪族CH2不对称伸缩振动(2920cm-1)的同时,伴随有脂肪族和脂环核CH伸缩振动(2900cm-1)和脂肪族CH3不对称伸缩振动(2950cm-1),根据对不同有机组分成烃动力学的研究,角质体具有单一的活化能。而树脂体则有一定的分布范围,表示结构上比角质体复杂一些。从参数类型看,各项参数指标值和角质体相比都明显偏低,尤其是富氢指数中的

(2950cm-1/1600cm-1,反映富含次甲基CH2的程度)变得很低。这种现象并不说明树脂体的富氢程度比角质体低,而是由于树脂体具有早期生烃特点造成的。即倾向于以生油为主的亚甲基、次甲基随着树脂体早期生油(实验样品Ro已达0.73%)已大大减少。但即使已进入正常的生油高峰期,树脂体仍然具有丰富的脂链结构,这些都说明树脂体的生油潜力比角质体更大。据热模拟研究,树脂体在镜质组反射率Ro为0.5%时就有渗出沥青体出现,其荧光可持续到290℃(Ro为0.87%),其CH2、CH3伸缩振动吸收峰的最大变化幅度是在230℃(Ro小于0.65%)以前,这些特征都说明树脂体在热演化过程中生烃比角质体早。

图7-2 徐14井太原组煤中树脂体FT.IR谱图

三、孢子体

孢子体主要由性质很稳定的孢粉素组成,它具有羟基、烯属双键和芳香结构特征(Given,1984),其化学组成也含有较多的脂肪族结构,属于富氢显微组分。但由于聚合程度高,其生烃活化能也相对较高,生烃较晚。研究样品中的孢子体以小孢子体为主,偶见的大孢子体在荧光下呈褐色—深褐色,说明已大量失去氢并出现芳构化。但小孢子体个体微小(一般<5μm),受测量微区(测量范围4μm)的限制,测试出的光谱图明显受光通量不足、信噪比低及周围其他组分信息的影响而复杂化。从谱图可以看出(图7-3),总体表现出代表芳烃中芳核的C=C骨架振动吸收峰(1545~1645cm-1)和对称弯曲振动(1350~1420cm-1)的吸收峰突出为特征,且前者峰型尖锐,峰强度较大;后者峰型较宽,强度较低。代表脂肪族结构的吸收峰仅在2900em-1有较弱的显示。虽然谱图因干扰太大而失真,但总的趋势可以看出,孢子体富氢程度远不如角质体和树脂体,相同热演化阶段其芳构化程度比角质体和树脂体高的多。从参数看,其各项指标(

)都比角质体和树脂体低,脂芳比为2.02,这说明作为煤中富氢组分,其生烃性能不如角质体和树脂体。孢子体的化学聚合程度较高,生烃活化能分布范围大,反映其化学组成比较复杂。据热模拟研究(金奎励等1997),孢子体在<290℃(Ro为0.87%)时,脂族基团不断得到加强,>320℃(Ro为1.04%),脂族基团吸收峰强度变小。290~320℃为最大生烃范围。

图7-3 孔古4井太原组煤中孢子体红外吸收光谱图

四、基质镜质体

分别选择孔古4井、大参1、徐14井的太原组和山西组煤中基质镜质体进行对比研究。从光谱图可以看出(图7-4),基质镜质体的红外吸收光谱图中脂肪族结构吸收峰、芳香族结构吸收峰、杂原子结构的吸收峰都有显示。在脂肪族结构中,代表脂肪族CH2不对称伸缩振动(2920cm-1)和CH2对称伸缩振动的吸收峰普遍发育且二峰相联,表明基质镜质体中氢有一定的含量,而且以利于生油的亚甲基和次甲基较发育为特征,具有一定的生烃潜力,从而论证了基质镜质体在本区煤成烃中的意义。芳香族结构中,代表C-O-C伸缩振动(1000~1100cm-1)的吸收峰尖锐、最强且有肩峰,其次是芳烃中芳核的C=C骨架振动吸收峰(1600cm-1)和烷链结构上的CH3、CH2不对称变形振动吸收峰(1460cm-1,区间值为1421~1480cm-1),而1460cm-1吸收峰的出现说明样品中含有一定量的脂族长链结构,这些脂族长链结构的出现证实了基质镜质体中超微类脂体的存在。在杂原子基因中,以含氧原子的3420cm-1吸收峰最明显,但峰型较宽,包容了从3200~3600cm-1的整个区间,因此,它实际上代表了含氧、含硫等杂原子的酚、醇、羧酸和水的(OH)伸缩振动,说明其中杂原子基团类型多而且以含氧杂原子基团为主的特征。

从孔古4井太原组和山西组煤中基质镜质体的红外吸收光谱看,除了峰型宽窄和高低稍有差异外,峰位分布基本相同,但富氢参数和富链参数都表现出太原组煤优于山西组煤的特征。大参1井太原组和山西组基质镜质体的红外吸收光谱在峰位方面没有大的变化,但在峰型和峰强度方面都有明显的差异,尤其是代表脂肪族结构的CH3不对称伸缩振动(2920cm-1)和CH2对称伸缩振动(2850cm-1)的吸收峰,太原组煤的基质镜质体明显比山西组强的多,这充分说明太原组煤的基质镜质体比山西组煤的基质镜质体富氢。从各项参数指标看,脂芳比(1460/1600cm-1),

(2920/1600cm-1)都以孔古4井太原组煤中基质镜质体较好,而徐14井太原组基质镜质体和大参1井山西组煤中基质镜质体相对偏低;从时代看,太原组比山西组煤中基质镜质体的各项参数指标都相对偏高。

图7-4 基质镜质体的Micm-FT-IR谱图

傅立叶变换红外光谱结构图的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于什么是傅立叶变换红外光谱、傅立叶变换红外光谱结构图的信息别忘了在本站进行查找喔。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624