资讯

承天示优,优品至上。

傅立叶变换红外操作(傅立叶变换红外光谱仪的工作原理)

承天示优官方账号 2022-12-14 资讯 727 views 0

今天给朋友们分享一下有关傅立叶变换红外操作的知识,其中当然也会对傅立叶变换红外光谱仪的工作原理进行一部分的介绍,加入能碰巧解决你现在遇到的困难,不要忘了关注本站,那我们现在开始吧!

本文目录一览:

5. 傅里叶变换红外光谱仪的基本结构,有哪些特点?简述工作原理?

红外线和可见光一样都是电磁波,而红外线是波长介于可见光和微波之间的一段电磁波。红外光又可依据波长范围分成近红外、中红外和远红外三个波区,其中中红外区(2.5~25μm;4000~400cm-1)能很好地反映分子内部所进行的各种物理过程以及分子结构方面的特征,对解决分子结构和化学组成中的各种问题最为有效,因而中红外区是红外光谱中应用最广的区域,一般所说的红外光谱大都是指这一范围。

红外光谱属于吸收光谱,是由于化合物分子振动时吸收特定波长的红外光而产生的,化学键振动所吸收的红外光的波长取决于化学键动力常数和连接在两端的原子折合质量,也就是取决于分子的结构特征。这就是红外光谱测定化合物结构的理论依据。

红外光谱作为“分子的指纹”广泛用于分子结构和物质化学组成的研究。根据分子对红外光吸收后得到谱带频率的位置、强度、形状以及吸收谱带和温度、聚集状态等的关系便可以确定分子的空间构型,求出化学建的力常数、键长和键角。从光谱分析的角度看主要是利用特征吸收谱带的频率推断分子中存在某一基团或键,由特征吸收谱带频率的变化推测临近的基团或键,进而确定分子的化学结构,当然也可由特征吸收谱带强度的改变对混合物及化合物进行定量分析。

傅里叶红外光谱仪由光源、迈克尔逊干涉仪、样品池、检测器和计算机组成,由光源发出的光经过干涉仪转变成干涉光,干涉光中包含了光源发出的所有波长光的信息。当上述干涉光通过样品时某一些波长的光被样品吸收,成为含有样品信息的干涉光,由计算机采集得到样品干涉图,经过计算机快速傅里叶变换后得到吸光度或透光率随频率或波长变化的红外光谱图。

朋友可以到行业内专业的网站进行交流学习!

分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

傅里叶红外光谱仪的用处

一、酒制品检测分析

不同产地的葡萄酒具有不同的质量与风格,市场上葡萄酒以假乱真、以次充好现象颇多,寻找简单有效地鉴别葡萄酒产区的方法,有利于葡萄酒市场的健康发展。向伶俐等人采用近、中红外光谱的贝叶斯信息融合技术对葡萄酒原产地进行快速识别,建模集准确率为87.11 %,检验集准确率为90.87 %,提高判别的准确度,为葡萄酒原产地真伪识别提供了一种高效低成本的新方法。

此外,利用红外光谱对白酒年份与香型鉴别也有十分效。因不同香型白酒的成分有所差异,其红外光谱也不尽相同,可根据红外光谱差异鉴别不同年份的白酒。

二、蜂蜜检测分析

我国蜂蜜质量参差不齐,掺假现象也较为严重。孙燕等利用中红外图谱分析仪结合化学计量软件建立饶河黑蜂蜂蜜产地真假判别模型判别饶河本地的蜂蜜样品和其它地区蜂蜜样品,准确率达90.3 %,为蜂蜜真伪鉴别提供了一种有效的方法。

三、谷类检测分析

近年来,少数造假者频频在陈旧大米中涂抹掺加植物油、矿物油,增加其亮度和光泽,冒充优质新鲜大米销售,严重危害消费者身心健康。张耀武等利用红外光谱对涂有和掺有矿物油的大米进行定性鉴别。

将分离出含有矿物油的试样进行红外光谱测试,未出现 1745 cm-1脂 C=O 的伸缩振动吸收和1000~1300 cm-1伸缩振动吸收,证明该试样中含有直链烷烃的矿物油。文中指出该方法可用于对大米、饼干、瓜子和食用油中是否掺加工业矿物油的鉴定。粮食在高温高湿条件下极易发霉变质,不仅造成经济损失还严重威胁人畜健康。

刘凌平等利用傅里叶变换衰减全反射红外光谱技术结合化学计量学方法(ART-FTIR),对稻谷中7 种常见有害霉菌进行了快速鉴定,建立的线性判别分析和偏最小二乘判别分析模型对7种不同类别菌株的留一交互验证整体正确率分别达到 87.1 %和87.3 %,表明ART-FTIR 技术技术可用于谷物中霉菌不同属间的快速鉴别,尤其对不同菌属的霉菌具有良好的判别效果。

四、果蔬检测分析

果蔬中农药残留快速、高效的检测技术是当前食品安全控制关注的重大问题。朱春艳用傅里叶红外光谱技术对敌百虫和辛硫磷两种农药的红外光谱进行了测量和分析。

验证了FTIR/ATR技术快速检测蔬菜中有机磷农药残留的可行性,测定敌百虫的最低的检测限为0.2×10-6(体积分数),相关系数为0.9141,辛硫磷的最低检测限为0.02×10-6,相关系数为0.9036,为果蔬农药残留检测提供了一种方便、快捷、准确的方法。

扩展资料:

傅里叶变换红外光谱仪主要由红外光源、分束器、干涉仪、样品池、探测器、计算机数据处理系统、记录系统等组成。

(1)光源:傅里叶变换红外光谱仪为测定不同范围的光谱而设置有多个光源。通常用的是钨丝灯或碘钨 灯(近红外)、硅碳棒(中红外)、高压汞灯及氧化钍灯(远红外)。

(2)分束器:分束器是迈克尔逊干涉仪的关键元件。其作用是将入射光束分成反射和透射两部分,然后 再使之复合,如果可动镜使两束光造成一定的光程差,则复合光束即可造成相长或相消干涉。

对分束器的要求是:应在波数v处使入射光束透射和反射各半,此时被调制的光束振幅最大。根据使用 波段范围不同,在不同介质材料上加相应的表面涂层,即构成分束器。

(3)探测器:傅里叶变换红外光谱仪所用的探测器与色散型红外分光光度计所用的探测器无本质的区 别。常用的探测器有硫酸三甘钛(TGS)、铌酸钡锶、碲镉汞、锑化铟等。

(4)数据处理系统:傅里叶变换红外光谱仪数据处理系统的核心是计算机,功能是控制仪器的操作,收集 数据和处理数据。

参考资料:百度百科——傅里叶红外光谱仪

红外光谱仪中文版使用说明书,疑难问题解答。如定期维护?

一. 红外光谱基本原理

红外光谱(Infrared Spectrometry,IR)又称为振动转动光谱,是一种分子吸收光谱。

当分子受到红外光的辐射,产生振动能级(同时伴随转动能级)的跃迁,在振动(转动)时伴

有偶极矩改变者就吸收红外光子,形成红外吸收光谱。用红外光谱法可进行物质的定性和定

量分析(以定性分析为主),从分子的特征吸收可以鉴定化合物的分子结构。

傅里叶变换红外光谱仪(简称 FTIR)和其它类型红外光谱仪一样,都是用来获得物质的

红外吸收光谱,但测定原理有所不同。在色散型红外光谱仪中,光源发出的光先照射试样,

而后再经分光器(光栅或棱镜)分成单色光,由检测器检测后获得吸收光谱。但在傅里叶变

换红外光谱仪中,首先是把光源发出的光经迈克尔逊干涉仪变成干涉光,再让干涉光照射样

品,经检测器获得干涉图,由计算机把干涉图进行傅里叶变换而得到吸收光谱。

红外光谱根据不同的波数范围分为近红外区(13330—4000 cm

-1

)、中红外区(4000-650

cm

-1

)和远红外区(650-10 cm

-1

)。VECTOR22 VECTOR22 FTIR光谱仪提供中红外区的分测

试。

二. 试样的制备

1. 对试样的要求

(1)试样应是单一组分的纯物质

(2)试样中不应含有游离水

(3)试样的浓度或测试厚度应合适

2.制样方法

(1)气态试样

使用气体池,先将池内空气抽走,然后吸入待测气体试样。

(2)液体试样

常用的方法有液膜法和液体池法。

液膜法:

沸点较高的试样,可直接滴在两片 KBr 盐片之间形成液膜进行测试。取两片 KBr 盐

片,用丙酮棉花清洗其表面并晾干。在一盐片上滴 1 滴试样,另一盐片压于其上,装入

到可拆式液体样品测试架中进行测定。扫描完毕,取出盐片,用丙酮棉花清洁干净后,

放回保干器内保存。粘度大的试样可直接涂在一片盐片上测定。也可以用 KBr 粉末压制

成锭片来替代盐片。

z 注意

盐片易吸水,取盐片时需戴上指套。

盐片装入液体样品测试架后,螺丝不宜拧得过紧,以免压碎盐片。

液体池法:

沸点较低、挥发性较大的试样或粘度小且流动性较大的高沸点样品,可以注入封闭

液体池中进行测试,液层厚度一般为 0.01-1mm。一些吸收很强的纯液体样品,如果在

减小液体池测试厚度后仍得不到好的图谱,可配成溶液测试。液体池要及时清洗干

净,不使其被污染。

(3)固体试样

常用的方法有压片法、石蜡糊法和薄膜法。

1北京大学化学学院中级仪器实验室 FTIR操作手册

压片法:

一般红外测定用的锭片为直径 13mm、厚度约 1mm左右的小片。取样品(约 1mg)与干燥

的KBr(约 200mg)在玛瑙研钵中混和均匀,充分研磨后(使颗粒达到约 2μm),将混

合物均匀地放入固体压片模具的顶模和底模之间,然后把模具放入压力机中,在 8T/cm

2

左右的压力下保持 1-2分钟即可得到透明或均匀半透明的锭片。取出锭片,装入固体

样品测试架中。

z 注意

溴化钾对钢制模具表面的腐蚀性很大,模具用后须及时清洗干净,然后放入保干器

中。

易吸水、潮解的样品不宜用压片法制样。

模具放入压力机内后,应先拧动顶阀,使压杆接近模具,然后关闭放气阀。小幅度

扳动扳手,使压力达到 8T/ cm

2

,保持 1-2 分钟。打开放气阀时,旋转幅度不要超过

30

!!

z 小技巧

对于难研磨样品,可先将其溶于几滴挥发性溶剂中再与溴化钾粉末混合成糊状,然

后研磨至溶剂挥发完全,也可在红外灯下赶走残留溶剂。

对于弹性样品如橡胶,可用低温(-40℃)使其变脆,再与溴化钾粉末混合研磨。

石蜡糊法:

将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测

试。

薄膜法:

固体样品制成薄膜进行测定可以避免基质或溶剂对样品光谱的干扰,薄膜的厚度为

10-30μm,且厚薄均匀。薄膜法主要用于高分子化合物的测定,对于一些低熔点的低分

子化合物也可应用。可将它们直接加热熔融后涂制或压制成膜,也可将试样溶解在低沸

点的易挥发溶剂中,涂到盐片上,待溶剂挥发后成膜来测定。

三. 中红外区透光材料

材料名称 化学组成 透光范围(cm

-1

) 水中溶解度(g/100mL) 折射率

氯化钠 NaCl 5000-625 35.7 1.54

溴化钾 KBr 5000-400 53.5 1.56

碘化铯 CsI 5000-165 44.0 1.79

KRS-5 TlBr,TlI 5000-250 0.02 2.37

氯化银 AgCl 5000-435 不溶 2.0

溴化银 AgBr 5000-285 不溶 2.2

氟化钡 BaF2 5000-830 0.17 1.46

氟化钙 CaF2 5000-1100 0.0016 1.43

硫化锌 ZnS 5000-710 不溶 2.2

硒化锌 ZnSe 5000-500 不溶 2.4

金刚石

(Ⅱ)

C 3400-2700;1650-600 不溶 2.42

锗 Ge 5000-430 不溶 4.0

硅 Si 5000-600 不溶 3.4

2北京大学化学学院中级仪器实验室 FTIR操作手册

四. VECTOR 22 FTIR光谱仪简介

VECTOR 22 FTIR 光谱仪由瑞士 Bruker公司制造。由光学台、计算机、打印机组成。

光谱范围:7500-370 cm

-1

分辨率:1cm

-1

信噪比:5500:1

波数精度:0.01cm

-1

红外光源:Globar(高强度空气冷却光源)

干涉仪:迈尔逊干涉仪(30

º

入射Rocksolid专利技术)

分束器:KBr上镀锗

检测器:DTGS(氘代硫酸三肽)

VECTOR 22 FTIR 光学台光路示意图

A-红外光源 B-孔径/薄膜轮 C-出口 D-光束分裂器

E.E

-窗口 F-样品支架 G-检测器

使用红外光谱仪时应注意保持室内清洁、干燥,不要震动光学台,取、放样品时,样品盖

应轻开轻闭。若改变测试参数,请做记录,测试完毕应复原。另外,眼睛不要注视氦-氖激

光,以免受到伤害。

3北京大学化学学院中级仪器实验室 FTIR操作手册

五. VECTOR 22 FTIR 光谱仪操作及软件应用

(一) 开机、关机

开机: .光学台ON

.计算机 ON (本计算机未设置密码)

.左双击 OPUS快捷键

.输入密码: OPUS(大写字母)

.User ID :选择 Administrator

.Assigned Workspaces: 不要修改

.单击 Login

.左击 OK,进入 OPUS 用户界面窗口(如下图)

关机: .关闭计算机各窗口后,关闭计算机

光学台 OFF.

(二)OPUS 用户界面介绍

(a) OPUS 软件所有功能的下拉菜单。

(b) 常用功能的快捷图标。

(c) OPUS 文件管理窗口,与Windows 浏览窗口相似。

(d) 谱图显示窗口。

(e) 概貌窗口,总是显示所选数据文件的整个频率范围的谱图。

(f) 在线帮助。

(g) 状态条显示后台运行的任务。

(h) 仪器状态指示。

4北京大学化学学院中级仪器实验室 FTIR操作手册

1. OPUS 浏览窗口

测量完成后产生的文件或打开的OPUS 文件时,其文件名、数据块和文件状态信息显示在

浏览窗口(屏幕左侧)。光标放在文件名上,将显示数据的完整路径;光标放在数据块上,

显示操作者姓名、样品名与样品形态。

(a) 单击可以缩小相应的谱图窗口。

(b) 蓝色表示此文件未经处理。文件名后面的数字,为该文件的拷贝数。

(c) 随文件所保存的所有数据块。图中图标表示有一个透过率光谱、一个单通道光谱、一个

干涉图和一个单通道背景光谱。如果数据块有颜色,表明相应谱图正显示在图谱窗口。

在文件名上单击鼠标右键,弹出文件操作菜单:

Save File: 对文件的任何处理不会自动保存到文件里。需点击Save File加以保存。

Unload File: 关闭文件。

Undo all Manipulations: 撤销对文件的所有处理。

Show Parameters: 显示该文件相应的参数和信息。

Copy Entry: 拷贝整个文件,包括所作的处理。

Clone Original: 仅拷贝原始文件。

5北京大学化学学院中级仪器实验室 FTIR操作手册

2.OPUS 谱图窗口

谱图窗口是在OPUS 用户界面的右边。当测量完成或文件调入后将会显示谱图。

默认的谱图显示区为4000~400cm

-1

和0~1.5 吸光度单位。通过Display—Scale All或单

击图标 可以显示全谱。

在谱图窗口的谱线上右击鼠标,出现下图所示菜单,可放大缩小谱图、改变谱图的显示

范围、添加标注、改变谱线颜色等。在谱图窗口的空白区右击鼠标,出现相似菜单,功能略

少。

Zoom In:放大谱图。按住鼠标左键拖动十字光标,框定需要放大的部分后,点击即放大。

从右键菜单中选择:Scale all Spectra / Show Everything(XY),即可恢复为全尺

寸谱图。

Zoom out:缩小谱图。操作方法同上。

Scale all Spectra ---- Show Everything(XY), 全范围显示所有谱图。

Maximize each spectrum(Y):将每个谱图的Y坐标均最大化显示。

Shift Curve:沿Y轴移动整个谱图或单向放大或缩小谱图。按住鼠标左键拖动谱图即可移动

或缩放。单击右键取消此功能。Reset 可还原。

Crosshair: Cursor,十字光标可在图谱区任意移动,显示相应点的X,Y 坐标。

Follow Data,光标仅沿谱线移动,很容易读出光谱上任意点的X,Y 坐标。

右击鼠标取消此功能。

Change Color:改变谱图颜色 。

Remove from Display: 从谱图窗口中去掉该谱图。

Add Annotation: 添加标注。单击谱图会在光标位置填加一个箭头,缺省显示该点的波数。

移动标注:按住鼠标左键拖动标注。

删除标注:在标注上单击鼠标右键,菜单中选择Remove。

编辑标注:在标注上单击鼠标右键,选择Properties。输入或编辑标注。

Properties: 设置谱图的横坐标和纵坐标。

6北京大学化学学院中级仪器实验室 FTIR操作手册

(三)光谱图的测试

测试光谱 Measure→Advanced Measurement

1 在 Basic 页,输入:

操作者姓名、样品名称、样品形态;。

2 在 Advanced 页,输入:

文件名

文件保存路径(此路径统一规定为:D:/DATA/导师姓名/学生姓名/),可输入或调出

分辨率(分辨率设为 4 cm

-1

,不要修改)

样品扫描次数(Scans)或样品扫描时间(Mimutes)

背景扫描次数(Scans)或样品扫描时间(Mimutes)

光谱测试范围(对中红外仪器,设置范围通常为:4000~400cm

-1

其它选项为常规设置,可以不改

3 另外的六个页面( 从 optic 至check signal)不要修改

4 在样品室中放入参比(或以空气作背景)

在 Basic 页,点 Background Single Channel ,测试背景

5 在样品室中放入样品

在 Basic 页,点 Sample Single Channel,测试样品

(注:以上设置的内容可以保存为一个方法文件:点 Save,选择保存路径,输入文件名。

文件名的后缀应是.XPM。以后测试时,只要在 Advanced 页点 Load,即可调出。)

(四) 显示谱图

测量完成后产生的文件或打开OPUS 文件后,其文件名、数据块和文件状态信息均显

示在浏览窗口(屏幕左侧小窗口)。光标放在文件名上,将显示文件的完整路径;光标放

在数据块上,显示操作者姓名、样品名与样品形态。

相应图谱显示在谱图窗口(在OPUS 用户界面的右侧窗口)。默认的谱图显示区为

4000~400cm

-1

和0~1.5 吸光度单位。通过Display—Scale All或单击图标 可以显

示全谱。

在谱图窗口的谱线上右击鼠标出现菜单,可放大缩小谱图、改变谱图的显示范围、添

加标注、改变谱线颜色等。在谱图窗口的空白区右击鼠标,出现相似菜单,功能略少。 具

体操作参见本手册第6页的相关介绍。

(五) 谱图处理

在实施各项谱图处理功能时,均有“Select Files”这一页,默认显示目前选中的谱图

文件名(在浏览窗口中打上红框的谱图文件)。若要添加文件,可将浏览窗口中所需谱图

的数据块(通常为吸收谱数据块或透射谱数据块)选中拖入即可。若要删除文件,选中文

件名后,按键盘上的“Delete”键。

1 基线校正 Manipulate → Baseline Correction

选择谱图(可对若干张谱图同时进行基线校正),再选择校正方法和校正点,点

Correct。经校正处理后的谱图自动覆盖原谱图。

Scattering Correction:校正后基线基本上落在0或100%处

Rubberband Correction:校正后部分基线不一定落在0或100%处

7北京大学化学学院中级仪器实验室 FTIR操作手册

Exclude CO2 Bands:扣除CO2谱段。选择此项,基线校正时对包含CO2的波段

(2400~2275cm

-1

、680~660cm

-1

)不予计算。

2 标峰位 Evaluate → Peak picking

选择谱图及需要标峰的谱区,设置灵敏度(峰的阈值),点Peak picking,谱图上将

显示峰位。

也可以选择互动模式来标峰:单击interactive mode,拖动阈值滑动条,标峰数量随

着阈值的变化而增减,由此可以比较方便地确定合适的阈值。点Store完成标峰。

3 谱图差减 Manipulate → Spectrum Subtraction

选择被减谱及减谱(减谱可是一个或若干个),选择谱区,点Subtract。得到的差谱

将覆盖被减谱。

若选择 Start Interactive Mode,可通过Times和 Changing digit设置不同的系数,

差谱 = 被减谱 – 系数 x 减谱

点Store完成差谱。可分别对几个谱图进行差减。

4 AB - TR 转换 Manipulate → AB - TR Conversion

透射谱和吸收谱之间互相转换。选择谱图,选择转换方向,点Conversion。新的谱

图将覆盖原谱图。

5 产生一段直线 Manipulate → Straight Conversion

产生一段直线命令用于消除谱图中的某些特殊干扰。选择谱图,设置频率范围,点

Generate。 谱图中这一段频率范围的谱线成为直线。

6 平滑 Manipulate → Smooth

选择谱图,定义平滑点数,单击Smooth。平滑点的可选值为5至25。还可以使用交互模

式平滑谱图。

8北京大学化学学院中级仪器实验室 FTIR操作手册

7 求导数 Manipulate → Derivative

选择光谱文件,选取平滑点和求导阶数,单击Process产生导数文件。导数谱显示在原

谱图的下方。

可对谱图计算一至五阶导数。求导的同时还可平滑光谱,以降低求导产生的噪声。其

最少平滑点数取决于求导的阶数。导数的阶越高,设置的点数应越多。最多允许25点。

8 1/cm - µm, nm Manipulate → 1/cm - µm, nm

改变横坐标单位。

9 积分 Integration

计算峰的面积和峰的高度。提供十八种积分方法。

10 归一化 Manipulate → Normalization

此功能是对谱图进行归一化处理和 Offset Correction。

选择要归一化的文件及频率范围,选择方法,点 Normalize。

有三种归一化方法:

(1) Min/Max Normalization --(最小/最大归一化):谱图的最小值变为 0,Y

轴的最大值扩展到 2 个吸收单位。对透射光谱归一化到 0到 1 的范围。

(2) Vector Normalization--(矢量归一化):首先计算光谱的平均值,然后

从谱图中减去平均值,因此谱图的中间下拉到 0;计算此时所有 Y 值的平方

和的平方根。原谱图除以此平方根值。经过这样处理的谱图,其矢量模方

为 1。

(3) Offset Correction—平移谱图,使最小 Y 值移至吸光值为 0。

11.气氛补偿Manipulate → Atomspheric Compensation

测量背景或样品谱时,光路中H2O/CO2的浓度的不同会造成H2O/CO2谱带的强度变

化。气氛补偿功能可以消除比率光谱图中H2O/CO2的干扰。

要进行气氛补偿的图谱文件,除了吸收(或透射)数据块外,还应包含 Single

Channel Sample Block和 Single Channel Background Block(测试前应在

Measure→Advanced Measurement 中,加选 single Channel 和Background 这二项数

据块加以保存)。

选择Manipulate → Atomspheric Compensation,将要处理谱图的Single

Channel Sample Block 和single Channel Reference Block 分别拖入相应的区域,

选中H2O Compensation 和CO2 Compensation,点Calculate 。

9北京大学化学学院中级仪器实验室 FTIR操作手册

(六)打印和拷盘

1.打印谱图 Print → Print Spectra

选择要打印的光谱图和有关数据块(如峰位数据块)

点Change Layout,选择图谱打印模板。常用的模板是:

Landscape-1, A4纸,一个光谱框,横打;

Portrait-2, A4纸,二个光谱框,竖打

Portrait-3, A4纸,三个光谱框,竖打

在Frequency Range中设置谱图打印区间;

在Options中,可选择Auto scale to all spectra ,将所有要打印的谱图均放大显

示。另外,光谱的X轴默认的是线性坐标,若要使用压缩坐标,可选择Use Compressed

Wavenumbers,2000 cm-1 以上的横坐标将压缩二倍。

需要注意的是:如果图谱打印模板包括一个以上光谱框,如Portrait-3, 一张A4纸上

打印三张独立的光谱图。这时,每个光谱框内要打印的谱图都要分别进行选择。选择方法

为:在Frame下拉框中选择光谱框名称,在文件选择中选择要打印在此光谱框内的文件。依

次操作,给每个光谱框中都选择好要打印的光谱图。

设置过程中可随时点击 Preview 进行预览。 待预览无误后,再点Print进行打印。

2.数据拷盘 File → Save File As

将图谱文件转化为数据文件后直接拷盘。须使用新软盘。

在 Select File 页中,选择要保存的文件,输入另存路径 A\(或在 Change Path 选

择)和文件名。

在 Mode 页选择 Date Point Table。

点 Save 完成。

10北京大学化学学院中级仪器实验室 FTIR操作手册

八.衰减全反射附件介绍

(一) 原理和特点

衰减全反射光谱(Attenuated Total Reflection Spectra 简称 ATR)又叫内反射

光谱(Internal Reflection Spectra)。发生全反射须具备两个条件:光从光密介质进

入光疏介质时才可能发生全反射;入射角要大于临界角。全反射现象不完全是在两种

介质的界面上进行的,部分光束要进入到光疏介质一段距离后才反射回来。透入到光

疏介质的光束,其强度随透入深度的增加按指数规律衰减。

ATR 谱具有以下特点:

(1) 红外辐射通过穿透样品与样品发生相互作用而产生吸收,因此 ATR 谱具有透射吸

收谱的特性和形状,但由于不同波数区间 ATR技术灵敏度不同,因此,ATR 谱吸

收峰相对强度与透射谱相比较并不完全一致。

(2) 非破坏性分析方法,能够保持原进行测定。

(二) 测试

1.ATR 附件的安装和调节

(1) 通过调节干涉仪选择光谱仪的能量。

(2) 用两个固定旋钮将 ATR 附件安装到光谱仪上。

(3) 仔细调节附件与光谱仪激光输出的相对位置,以获得最大输出。

(4) 用固定旋钮将 ATR 附件固定。

2.样品的准备

红外吸收谱是将样品与无样品在晶体上的背景光扣除得到。注意要保证样品完

全覆盖晶体表面。由于 ATR 晶体是由ZnSe 构成,易碎,易划伤。即使是轻微的划痕

也会导致信号输出的减小。因此清洗时需使用温和的清洗剂,如乙醇、丙酮或水。

固体样品和粉末样品直接置于 ATR晶体上,用附带的固定夹压紧。压紧时用金

属销向下拧紧,以保证样品与晶体的紧密接触。

液体样品适用于低粘度的液体。粘性液体要保证完全铺展在晶体表面。

2.谱图扫描及数据处理与一般红外谱相同

傅里叶红外光谱仪的介绍

产品简介傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。

 显微傅里叶变换红外光谱研究

煤的红外吸收光谱常见的有三大类吸收峰,第一类为饱和烃结构吸收峰,包括700~720cm-1、1380cm-1、1460cm-1、2850cm-1、2950cm-1等;第二类为芳烃结构吸收峰,包括:730~900cm-1、1000~1100cm-1、1545~1600cm-1、3030cm-1、3050cm-1等;第三类为含O、S、N等杂环化合物的吸收峰,包括1100~1300cm-1(1290cm-1、1250cm-1、1170cm-1)、1650~1750cm-1、3200~3600cm-1等。对煤来说,其脂肪族结构中多缺乏代表海相源岩特征的长链烷烃-(CH2)n-中的C-C骨架的变形振动吸收峰(700~720cm-1),较多出现的是甲基(CH3)(1380cm-1)、次甲基(CH2)(1460cm-1)的弯曲振动吸收峰和甲基、亚甲基的伸缩振动吸收峰(分别为2850cm-1和2950cm-1);芳烃结构的吸收峰则都可能出现,但以1000~1200cm-1(代表芳环CH面内弯曲振动吸收)、1450cm-1、1600cm-1(代表芳烃中-C=C-基团的伸展振动吸收峰)和3030cm-1、3050cm-1(代表芳核上次亚甲基(CH)的面内伸缩振动吸收峰)比较常见。而含杂原子的吸收峰以3200~3600cm-1(代表酚、醇和羧酸中OH基团、水中的OH基及NH基团的伸缩振动)吸收峰常见,而且比较强。

根据现有研究成果和认识程度,红外吸收光谱在烃源岩研究中的应用见表7-2;研究区石炭—二叠纪煤中不同显微组分的类型参数特征归纳于表7-3。

表7-2 红外吸收光谱在烃源岩研究中的应用综合表

表7-3 研究区不同显微组分红外光谱参数

注:K—孔古4井;X—徐14井;D—大参1井;C—太原组;P—山西组;D—基质镜质体B。

一、角质体

角质体的化学成分是角质和蜡,其中角质是一种生物聚酯,为一种不溶饱和羟基酸聚酯,具有高聚合特征,是植物所产生的最稳定物质,其氢含量可达10%左右。尽管其生烃活化能较高,但其表层的可溶烃类和蜡质却能早期生烃。从角质体的红外吸收光谱图(图7-1)可以看出,其峰型比较简单,在波数1465cm-1、2846cm-1和2925cm-1处有明显而且较强的吸收峰,它们均是脂肪族结构的吸收峰,分别代表烷链结构上的CH3、CH2不对称变形振动(1465cm-1);脂肪族CH2对称伸缩振动(2850cm-1)和脂肪族CH2不对称伸缩振动(2920cm-1);而芳香族结构的吸收峰在谱图中都极其微弱,充分反映了角质体富氢贫氧的特征。在脂肪族结构中,以亚甲基的吸收峰最强,甲基和烷链结构上的CH3、CH2吸收峰也比较尖锐,这说明结构中含有一定的长链脂肪烃。根据峰面积求得的富氢指数ICH2高达64;其脂芳比高达21,按照脂肪族基团中的亚甲基和次甲基以生油为主(秦匡中,1995)的认识,充分说明角质体具有很好的生油能力。

据热模拟研究(金奎励等,1997),角质体中代表脂肪族基团的2950cm-1和2850cm-1吸收峰到260℃(Ro为0.72%)时就达到最大值,到360℃(Ro为1.22%)时仍然很强。从荧光性质变化与温度关系看,在260~290℃时,Q值变化最大,荧光光谱较乱,呈多峰状,到360℃时仍见有极弱的暗褐色荧光。这说明角质体在热演化过程中具有液态窗范围宽的特点。

图7-1 孔古4井山西组煤中角质体FT.IR谱图

二、树脂体

树脂体的主要生源母质是树脂和蜡,树脂主要化学成分是倍半萜、二萜和三萜酸类等树脂酸。树脂酸分子量小,分子结构简单,易于早期生烃(Snowdon,1991),而蜡的主要成分是更加富氢的长直链醇类和脂肪酸类合成的脂类,也是早期生烃的母质之一。因此,树脂体生烃比其他壳质组分都早。从谱图(图7-2)上可以看出,它与角质体的峰型、峰位及强度都具有很好的相似性,即主要由脂肪族结构的1460cm-1、2850cm-1和2920cm-1强吸收峰组成,代表芳核结构的吸收峰除了在代表芳烃中CH面外变形振动(810cm-1)有所显示外,其他峰位都很弱;这从总体上反映了树脂体富氢的特征。但和角质体相比,在代表脂肪族CH2不对称伸缩振动(2920cm-1)及烷链结构上的CH3、CH2不对称变形振动吸收峰(1460cm-1)中有明显的肩峰显示,这说明在脂肪族CH2不对称伸缩振动(2920cm-1)的同时,伴随有脂肪族和脂环核CH伸缩振动(2900cm-1)和脂肪族CH3不对称伸缩振动(2950cm-1),根据对不同有机组分成烃动力学的研究,角质体具有单一的活化能。而树脂体则有一定的分布范围,表示结构上比角质体复杂一些。从参数类型看,各项参数指标值和角质体相比都明显偏低,尤其是富氢指数中的

(2950cm-1/1600cm-1,反映富含次甲基CH2的程度)变得很低。这种现象并不说明树脂体的富氢程度比角质体低,而是由于树脂体具有早期生烃特点造成的。即倾向于以生油为主的亚甲基、次甲基随着树脂体早期生油(实验样品Ro已达0.73%)已大大减少。但即使已进入正常的生油高峰期,树脂体仍然具有丰富的脂链结构,这些都说明树脂体的生油潜力比角质体更大。据热模拟研究,树脂体在镜质组反射率Ro为0.5%时就有渗出沥青体出现,其荧光可持续到290℃(Ro为0.87%),其CH2、CH3伸缩振动吸收峰的最大变化幅度是在230℃(Ro小于0.65%)以前,这些特征都说明树脂体在热演化过程中生烃比角质体早。

图7-2 徐14井太原组煤中树脂体FT.IR谱图

三、孢子体

孢子体主要由性质很稳定的孢粉素组成,它具有羟基、烯属双键和芳香结构特征(Given,1984),其化学组成也含有较多的脂肪族结构,属于富氢显微组分。但由于聚合程度高,其生烃活化能也相对较高,生烃较晚。研究样品中的孢子体以小孢子体为主,偶见的大孢子体在荧光下呈褐色—深褐色,说明已大量失去氢并出现芳构化。但小孢子体个体微小(一般<5μm),受测量微区(测量范围4μm)的限制,测试出的光谱图明显受光通量不足、信噪比低及周围其他组分信息的影响而复杂化。从谱图可以看出(图7-3),总体表现出代表芳烃中芳核的C=C骨架振动吸收峰(1545~1645cm-1)和对称弯曲振动(1350~1420cm-1)的吸收峰突出为特征,且前者峰型尖锐,峰强度较大;后者峰型较宽,强度较低。代表脂肪族结构的吸收峰仅在2900em-1有较弱的显示。虽然谱图因干扰太大而失真,但总的趋势可以看出,孢子体富氢程度远不如角质体和树脂体,相同热演化阶段其芳构化程度比角质体和树脂体高的多。从参数看,其各项指标(

)都比角质体和树脂体低,脂芳比为2.02,这说明作为煤中富氢组分,其生烃性能不如角质体和树脂体。孢子体的化学聚合程度较高,生烃活化能分布范围大,反映其化学组成比较复杂。据热模拟研究(金奎励等1997),孢子体在<290℃(Ro为0.87%)时,脂族基团不断得到加强,>320℃(Ro为1.04%),脂族基团吸收峰强度变小。290~320℃为最大生烃范围。

图7-3 孔古4井太原组煤中孢子体红外吸收光谱图

四、基质镜质体

分别选择孔古4井、大参1、徐14井的太原组和山西组煤中基质镜质体进行对比研究。从光谱图可以看出(图7-4),基质镜质体的红外吸收光谱图中脂肪族结构吸收峰、芳香族结构吸收峰、杂原子结构的吸收峰都有显示。在脂肪族结构中,代表脂肪族CH2不对称伸缩振动(2920cm-1)和CH2对称伸缩振动的吸收峰普遍发育且二峰相联,表明基质镜质体中氢有一定的含量,而且以利于生油的亚甲基和次甲基较发育为特征,具有一定的生烃潜力,从而论证了基质镜质体在本区煤成烃中的意义。芳香族结构中,代表C-O-C伸缩振动(1000~1100cm-1)的吸收峰尖锐、最强且有肩峰,其次是芳烃中芳核的C=C骨架振动吸收峰(1600cm-1)和烷链结构上的CH3、CH2不对称变形振动吸收峰(1460cm-1,区间值为1421~1480cm-1),而1460cm-1吸收峰的出现说明样品中含有一定量的脂族长链结构,这些脂族长链结构的出现证实了基质镜质体中超微类脂体的存在。在杂原子基因中,以含氧原子的3420cm-1吸收峰最明显,但峰型较宽,包容了从3200~3600cm-1的整个区间,因此,它实际上代表了含氧、含硫等杂原子的酚、醇、羧酸和水的(OH)伸缩振动,说明其中杂原子基团类型多而且以含氧杂原子基团为主的特征。

从孔古4井太原组和山西组煤中基质镜质体的红外吸收光谱看,除了峰型宽窄和高低稍有差异外,峰位分布基本相同,但富氢参数和富链参数都表现出太原组煤优于山西组煤的特征。大参1井太原组和山西组基质镜质体的红外吸收光谱在峰位方面没有大的变化,但在峰型和峰强度方面都有明显的差异,尤其是代表脂肪族结构的CH3不对称伸缩振动(2920cm-1)和CH2对称伸缩振动(2850cm-1)的吸收峰,太原组煤的基质镜质体明显比山西组强的多,这充分说明太原组煤的基质镜质体比山西组煤的基质镜质体富氢。从各项参数指标看,脂芳比(1460/1600cm-1),

(2920/1600cm-1)都以孔古4井太原组煤中基质镜质体较好,而徐14井太原组基质镜质体和大参1井山西组煤中基质镜质体相对偏低;从时代看,太原组比山西组煤中基质镜质体的各项参数指标都相对偏高。

图7-4 基质镜质体的Micm-FT-IR谱图

傅立叶变换红外光谱仪的优点?

其主要优点如下:

1)扫描速度快。傅立叶变换红外光谱仪的扫描速度比色散型仪器快数百倍,而且在任何测量时间内都能获得辐射源的所有频率的全部信息,即所谓的“多路传输”。对于稳定的样品,在一次测量中一般采用多次扫描、累加求平均法得干涉图,这就改善了信噪比。在相同的总测量时间和相同的分辨率条件下,傅里叶变换红外光谱法的信噪比比色散型的要提高数十倍以上。

2)具有很高的分辨率。分辨率是红外光谱仪的主要性能指标之一,指光谱仪对两个靠得很近的谱线的辨别能力。傅里叶变换红外光谱仪均有多档分辨率值供用户据实际需要随选随用。

3)波数精度高。波数是红外定性分析的关键参数,因此仪器的波数精度非常重要。因为干涉仪的动镜可以很精确地驱动,所以干涉图的变化很准确,同时动镜的移动距离是He-Ne激光器的干涉纹测量的,从而保证了所测的光程差很准确,因此在计算的光谱中有很高的波数精度和准确度,通常可到 0.01cm-1。

4)极高的灵敏度。色散型红外分光光度计大部分的光源能量都损失在入口狭缝的刀口上,而傅立叶变换红外仪没有狭缝的限制,辐射通量只与干涉仪的平面镜大小有关,在同样的分辨率下,其辐射通量比色散型仪器大得多,从而使检测器接受的信噪比增大,因此具有很高的灵敏度,由于此优点,使傅立叶变换红外光谱仪特别适合测量弱信号光谱。

5)研究光谱范围宽。一台傅立叶变换红外仪只要用计算机实现测量仪器的元器件(不同的分束器和光源等)的自动转换,就可以研究整个近红外、中红外和远红外区的光谱。

主要就这几点哈。

关于傅立叶变换红外操作和傅立叶变换红外光谱仪的工作原理的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624