资讯

承天示优,优品至上。

金属离子傅里叶红外光谱(傅里叶红外光谱的作用)

承天示优官方账号 2023-01-08 资讯 1690 views 0

今天的文章给大伙介绍下金属离子傅里叶红外光谱,和傅里叶红外光谱的作用相关的内容,希望能对小伙伴们有所帮助,记得不要忘记收藏下本站喔。

本文目录一览:

红外光谱

一、红外光谱的基本原理

分子运动包括分子整体的转动、组成原子的振动和分子中电子的运动。分子的每一运动状态都具有一定的能量。在分子中,各原子靠相互的键力作用维持在平衡位置,并在平衡位置附近作微小的振动,构成分子的振动模式。分子的振动在一般的情况下是复杂的,因此在一定条件下可把分子的振动看作是几种相互独立的较简单的振动方式的叠加。这些相互独立的较简单的振动方式转为简正振动模式。每种简正振动模式有其特征频率(v),各种简正振动频率由分子的几何构型、原子间的键力场及原子的质量等因素决定的。

分子在作频率为v的简正振动时,它的振动能量为:En=(1/2+n)hv式中,n是振动能级的振动量子数,取整数0,1,2,…,h是普朗克常量。

振动基态E0称为零点振动能,即便是在绝对零度时也存在零点振动能。当入射光子的能量hv恰好等于振动的能级差时,分子有可能吸收光子能量而发生振动状态的跃迁。

可见,hv光=E1-E0=hv0。当入射光的频率等于分子的一个简正振动频率(v光=v0)时,则分子有可能吸收光的能量,从基态跃迁到第一激发态。按经典理论的说法,就是由于入射光的频率等于振动的固有频率,使分子对光能发生共振吸收(图13-5-1)。

图13-5-1 红外光谱振动基态

产生红外吸收的条件,除了上述的跃迁规律外,同时还必须具有偶极矩的变化,这种振动方式称为红外活性的,反之,在振动过程中偶极矩不发生变化的振动方式是非红外活性的,虽然有振动,但不能吸收红外辐射。一个多原子分子可具有3N-6种(N为组成分子的原子数)简谐振动(对于线性分子只有3N-5种),各种简谐振动具有一定的能量,在特有的波数位置上应产生吸收,即每种简谐振动相应有一个振动频率。在各种简谐振动中,有的振动属于非红外活性,有的因具有相同的振动频率(但方向相反)而产生振动简并。所以,红外振动频率数目总是少于振动形式数目3N-6(或3N-5),分子对称型越高,简并越多,振动频率越少于振动数目。

测量和记录红外吸收光谱的仪器称为红外分光光度计。根据分光原理的不同,红外分光光度计可分为两大类型:色散型和干涉型。色散型红外分光光度计依据光的折射和衍射,采用色散元件(棱镜或光栅)进行分光;干涉型红外分光光度计则是基于光相干性原理利用干涉仪达到分光的目的。再根据数学上的傅立叶变换函数的特性对干涉仪进行改进,并利用计算机将其光源的干涉图转换成光源的光谱图,故又称为傅立叶红外分光光度计(fTIR)。

由于傅立叶变换红外分光光度计屏弃了狭缝装置,使得它在任何测量时间内都能够获得辐射源的所有频率的全部信息,同时也消除了狭缝对光谱能量的限制,使得光能的利用率大大提高,即所谓能量输出大,因而它在实际使用上有很多优点。提高了灵敏度、分辨率和精度(0.01cm-1),减少了杂散光。

二、红外光谱的解析

红外区的划分

珠宝玉石学GAC教程

(1)近红外光区:其吸收带主要是由低能电子跃迁、含氢原子团伸缩振动的倍频吸收等产生的。该区的光谱可用于研究稀土和其他过渡金属离子的化合物,及水、含氢原子团化合物的分析(如胶、蜡和宝玉石中的有机染料)。

(2)中红外光区:该区的吸收带主要为基频吸收带,由于基频振动是红外光谱中吸收最强的振动,故此区最宜用于对宝玉石进行红外光谱的定性和定量分析。①在4000~1250cm-1称为特征频率区,此区的吸收峰较疏,主要包括:含有氢原子的单键、各种三键和双键的伸缩振动的基频峰;②1250~400cm-1频区是宝石矿物鉴定的指纹区。所出现的谱带相当于各种单键的伸缩振动,以及多数基团的弯曲振动。③相关频率:特征频率可以证明官能团的存在,但多数情况下,一个官能团有数种振动形式,而每一种红外活性振动都有一个相应的吸收峰,有时还能观察到倍频峰,因而不能由单一特征峰肯定官能团的存在。特征频率是与相关频率相互依存的吸收峰,其数目是由分子结构和光谱图的波长范围决定的。在中红外光谱区,多数基团都有一组相关峰。

(3)远红外光区:该区的吸收带主要与气体分子中的纯转动跃迁、振动-转动跃迁,一般不在此区范围内进行宝玉石分析。

三、试样的制备

现代的傅立叶红外光谱仪附有显微透射和反射红外光谱装置,可以不破坏样品直接检测。对不透明的宝石采用反射红外光谱装置检测,对透明的宝石采用透射红外光谱装置检测。对于宝石矿物原料则采用粉末法制备样品。粉末法制备样品制备的方法主要有2种:压片法和糊状法。

(1)压片法:一般将宝玉石样品取下1~3mg,放在玛瑙研钵中制成粉末,加100~300mg KBr混合研磨均匀,再加入到压模内,压制成一定直径或厚度的透明片。然后进行测定。

(2)糊状法:如果是研究宝玉石中的氢的存在形式,则将试样研成粉末后和石蜡油混合研磨制成糊膏,以减少在样品中的散射。

一般来说,在制备试样时应注意以下几点:①试样最好是单一组分的物质;②试样的浓度或测试厚度应选择适当,以使光谱中大多数吸收峰的透光度处于15%~70%范围内;③试样中不应含有游离水。

四、红外光谱在宝石学中的应用

红外光谱是振动光谱,它是物质内部的显微结构和键合的灵敏探测器。根据所观测到的吸收峰的位置、对称性和相对强度,可提供非常有用的结构和成分信息。利用特征吸收谱带的频率,推断分子中存在某一基团成键。进而再由特征吸收谱带频率的位移,推断邻接基团的特征,由分子的特征吸收谱带强度的改变,可对其混合物和化合物进行定量分析。

红外光谱图的表示:纵坐标表示透过率(或吸收率),横坐标表示波长(nm)或频率(cm-1)。红外光谱在宝玉石学中有着广泛的应用。

(1)宝玉石物相的鉴定:与钻石相似的无色宝石,如无色的立方氧化锆、钇铝榴石和锡石等和钻石十分相似,但它们的红外光谱图有明显的区别。

(2)钻石类型的判定:如图13-5-2是用FTIR判定钻石类型的一个好方法。

图13-5-2 用红外光谱(FTIR)判定钻石类型

图13-5-3 金刚石的红外光谱图

(3)浸染宝玉石的检测:如翡翠的A、B和C货的检测,镀膜处翡翠的鉴定。

(4)近红外区是宝玉石中碳、氢和氧等元素存在形式研究的特征区。矿物中若有水分子存在,则它的组合频和倍频均在近红外区(如绿柱石和电气石等)。红外光谱图中(图13-5-3)显示IIb型金刚石结构中存在H2分子,其振动谱峰位于4106cm-1。

傅里叶红外光谱仪Spectrum65的操作步骤

简单操作规程

1、打开仪器电源开关,听到“迪迪”声后,启动计算机。

2、双击桌面上Spectra Manager图标打开主界面,进入光谱窗口。

3、点击Spectra Manager 窗口里的Spectrum Measurement 图标,进入光谱测量窗口,以进行样品的光谱测量。

4、设置测量参数,点击Measure 􀃆Parameters。

5、进行背景的测量,点击Background Measurement,测量背景、保存。

6、放入已制好的样品,点击Measurement进行样品的光谱扫描,得到样品光谱图保存、分析。

7、点击Spectra Analysisi进行光谱分析。

8、测量完毕后,退出Spectra Manager光谱窗口,退出计算机系统。

9、关闭红外光谱仪和计算机电源,并做好使用情况的登记。

注意事项

1、为了得到稳定的数据,最好在开机15分钟之后进行测量。

2、湿气会影响红外的使用寿命,要特别注意保持实验室湿度指标(小于60%)。

3、红外主机的Resume开关要一直保持在开机状态,以利于仪器内部的除湿。

4、样品仓内的红色窗片材质为KRS-5(有毒性),如果不小心触到请洗手。

5、请勿擅自搬动主机,否则会损坏光路系统。如有搬动需要,须把主机内的固定螺丝上紧。

6、测量背景时,切勿放入样品。

朋友可以到行业内专业的网站进行交流学习!

分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

红外光谱仪操作规程及注意事项

1. 保持室内干燥,空调和除湿机必须全天开机(保持环境条件25±10℃左右,湿度≤70%);

2. 保持实验室安静和整洁,不得在实验室内进行样品化学处理,实验完毕即取出样品室内的样品。

3. 经常检查干燥剂颜色,如果兰色变浅,立即更换。

4. 根据样品特性以及状态,制定相应的制样方法并制样。

5. 测试红外光谱图时,扫描空光路背景信号和样品文件信号,经傅立叶变换得到样品红外光谱图。根据需要,打印或者保存红外光谱图。

6. 实验完毕后在记录本上记录使用情况。

7. 设备停止使用时,样品室内应放置盛满干燥剂的培养皿。

8. 干燥剂再生:将干燥剂在烘箱内105℃烘干至兰色(约3小时)即可。

9. 将压片模具、KBr晶体、液体池及其窗片放在干燥器内备用。

10. 液体池使用NaCl、CaF2、BaF2等晶体很脆易碎,应小心保存。

11. 液体池使用的KRS-5晶体剧毒,使用时避免直接接触(戴手套),打磨KRS-5晶体时避免接触或吸入KRS-5粉末,打磨的废弃物必须妥善处理。

朋友可以到行业内专业的网站进行交流学习!

分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

傅里叶红外光谱仪的介绍

产品简介傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。

傅里叶红外光谱仪的用处

一、酒制品检测分析

不同产地的葡萄酒具有不同的质量与风格,市场上葡萄酒以假乱真、以次充好现象颇多,寻找简单有效地鉴别葡萄酒产区的方法,有利于葡萄酒市场的健康发展。向伶俐等人采用近、中红外光谱的贝叶斯信息融合技术对葡萄酒原产地进行快速识别,建模集准确率为87.11 %,检验集准确率为90.87 %,提高判别的准确度,为葡萄酒原产地真伪识别提供了一种高效低成本的新方法。

此外,利用红外光谱对白酒年份与香型鉴别也有十分效。因不同香型白酒的成分有所差异,其红外光谱也不尽相同,可根据红外光谱差异鉴别不同年份的白酒。

二、蜂蜜检测分析

我国蜂蜜质量参差不齐,掺假现象也较为严重。孙燕等利用中红外图谱分析仪结合化学计量软件建立饶河黑蜂蜂蜜产地真假判别模型判别饶河本地的蜂蜜样品和其它地区蜂蜜样品,准确率达90.3 %,为蜂蜜真伪鉴别提供了一种有效的方法。

三、谷类检测分析

近年来,少数造假者频频在陈旧大米中涂抹掺加植物油、矿物油,增加其亮度和光泽,冒充优质新鲜大米销售,严重危害消费者身心健康。张耀武等利用红外光谱对涂有和掺有矿物油的大米进行定性鉴别。

将分离出含有矿物油的试样进行红外光谱测试,未出现 1745 cm-1脂 C=O 的伸缩振动吸收和1000~1300 cm-1伸缩振动吸收,证明该试样中含有直链烷烃的矿物油。文中指出该方法可用于对大米、饼干、瓜子和食用油中是否掺加工业矿物油的鉴定。粮食在高温高湿条件下极易发霉变质,不仅造成经济损失还严重威胁人畜健康。

刘凌平等利用傅里叶变换衰减全反射红外光谱技术结合化学计量学方法(ART-FTIR),对稻谷中7 种常见有害霉菌进行了快速鉴定,建立的线性判别分析和偏最小二乘判别分析模型对7种不同类别菌株的留一交互验证整体正确率分别达到 87.1 %和87.3 %,表明ART-FTIR 技术技术可用于谷物中霉菌不同属间的快速鉴别,尤其对不同菌属的霉菌具有良好的判别效果。

四、果蔬检测分析

果蔬中农药残留快速、高效的检测技术是当前食品安全控制关注的重大问题。朱春艳用傅里叶红外光谱技术对敌百虫和辛硫磷两种农药的红外光谱进行了测量和分析。

验证了FTIR/ATR技术快速检测蔬菜中有机磷农药残留的可行性,测定敌百虫的最低的检测限为0.2×10-6(体积分数),相关系数为0.9141,辛硫磷的最低检测限为0.02×10-6,相关系数为0.9036,为果蔬农药残留检测提供了一种方便、快捷、准确的方法。

扩展资料:

傅里叶变换红外光谱仪主要由红外光源、分束器、干涉仪、样品池、探测器、计算机数据处理系统、记录系统等组成。

(1)光源:傅里叶变换红外光谱仪为测定不同范围的光谱而设置有多个光源。通常用的是钨丝灯或碘钨 灯(近红外)、硅碳棒(中红外)、高压汞灯及氧化钍灯(远红外)。

(2)分束器:分束器是迈克尔逊干涉仪的关键元件。其作用是将入射光束分成反射和透射两部分,然后 再使之复合,如果可动镜使两束光造成一定的光程差,则复合光束即可造成相长或相消干涉。

对分束器的要求是:应在波数v处使入射光束透射和反射各半,此时被调制的光束振幅最大。根据使用 波段范围不同,在不同介质材料上加相应的表面涂层,即构成分束器。

(3)探测器:傅里叶变换红外光谱仪所用的探测器与色散型红外分光光度计所用的探测器无本质的区 别。常用的探测器有硫酸三甘钛(TGS)、铌酸钡锶、碲镉汞、锑化铟等。

(4)数据处理系统:傅里叶变换红外光谱仪数据处理系统的核心是计算机,功能是控制仪器的操作,收集 数据和处理数据。

参考资料:百度百科——傅里叶红外光谱仪

傅里叶红外光谱仪干什么用的,可以测哪些参数,都有什么意义?

傅里叶红外光谱仪(FT-IR)是分子吸收光谱,不同的官能团,化学键振动或转动,对不同波数的红外光有吸收,据此,可以测定出样品有哪些官能团或化学键存在或变化,用以物质的定性、定量、反应过程等的研究。

5. 傅里叶变换红外光谱仪的基本结构,有哪些特点?简述工作原理?

红外线和可见光一样都是电磁波,而红外线是波长介于可见光和微波之间的一段电磁波。红外光又可依据波长范围分成近红外、中红外和远红外三个波区,其中中红外区(2.5~25μm;4000~400cm-1)能很好地反映分子内部所进行的各种物理过程以及分子结构方面的特征,对解决分子结构和化学组成中的各种问题最为有效,因而中红外区是红外光谱中应用最广的区域,一般所说的红外光谱大都是指这一范围。

红外光谱属于吸收光谱,是由于化合物分子振动时吸收特定波长的红外光而产生的,化学键振动所吸收的红外光的波长取决于化学键动力常数和连接在两端的原子折合质量,也就是取决于分子的结构特征。这就是红外光谱测定化合物结构的理论依据。

红外光谱作为“分子的指纹”广泛用于分子结构和物质化学组成的研究。根据分子对红外光吸收后得到谱带频率的位置、强度、形状以及吸收谱带和温度、聚集状态等的关系便可以确定分子的空间构型,求出化学建的力常数、键长和键角。从光谱分析的角度看主要是利用特征吸收谱带的频率推断分子中存在某一基团或键,由特征吸收谱带频率的变化推测临近的基团或键,进而确定分子的化学结构,当然也可由特征吸收谱带强度的改变对混合物及化合物进行定量分析。

傅里叶红外光谱仪由光源、迈克尔逊干涉仪、样品池、检测器和计算机组成,由光源发出的光经过干涉仪转变成干涉光,干涉光中包含了光源发出的所有波长光的信息。当上述干涉光通过样品时某一些波长的光被样品吸收,成为含有样品信息的干涉光,由计算机采集得到样品干涉图,经过计算机快速傅里叶变换后得到吸光度或透光率随频率或波长变化的红外光谱图。

朋友可以到行业内专业的网站进行交流学习!

分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

今天的金属离子傅里叶红外光谱有关的说明就先聊到这里啦,想指导更多有关于傅里叶红外光谱的作用的东西,可以移步到官网去查看哦,会有更多的惊喜等着你哦。

微信号:Leeyo931201
咨询采购,报价(傅里叶红外光谱,应急,非道路,污染源排放,温室气体等检测,定量),请点击下方按钮。
复制微信号

发表评论

发表评论:

18893790697 扫描微信 656823624